
Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab

Human-Oriented Robotics

Robot Motion Planning

Kai Arras

Social Robotics Lab, University of Freiburg

Winter term 2014/2015

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Contents

• Introduction

• Configuration space

• Combinatorial planning

• Sampling-based planning

• Potential fields methods

• A*, Any-Angle A*, D*/D* Lite

• Dynamic Window Approach (DWA)

• Markov Decision Processes (MDP)

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Introduction

• Robot motion planning is a fundamental robotics problem since, by
definition, a robot accomplishes tasks by moving in the real world

• For plan execution, motion planning is tightly coupled to control 
theory

• The goal of motion planning is to enable a robot to reach a goal
configuration (e.g. a goal location in its workspace) without 
collisions or self-collisions

• Notice the difference:
• Perception, sensing, tracking and un/supervised learning are all estimation-related

tasks where a robot sits still, observes the world and reasons about the state of the
world or of itself

• Motion planning, plan execution and control are planning and decision-related 
tasks where the robot actually moves and physically interacts with the world

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Introduction

• The motion planning problem can be stated as follows: given
• an initial configuration of the robot (e.g. a pose in 2D)

• a desired goal configuration

• a model of the robot (e.g. in terms of geometry, kinematics and dynamics)

• A map of the environment with obstacles in the workspace,

find an admissible, collision-free path that moves the robot gradually
from start to goal

• There are two different criteria that a plan may need to satisfy:
• Feasibility: find a plan that causes arrival at the goal state, regardless of its efficiency.

For many interesting planning problems, feasibility is already very challenging

• Optimality: in addition to arriving in a goal state, find a feasible plan that is optimal in
some sense (e.g. shortest/smoothest path, minimal time, smallest risk). Achieving
optimality can be considerably harder than feasibility

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Introduction

• Motion planning would be simple if robots were free-floating points in
space without physical extension or constraints to their motion

• But considering these rather simple wheeled mobile robots, we have

• Physical extension: non-circular shape

• Motion constraints: they can go 
anywhere but not by following 
any trajectory. This is an example  
of non-holonomic constraints

• If these robots had very weak 
motors with limited acceleration,  
dynamic constraints would come  
into play (inertia, mass, torque etc.)

• Let us consider some examples...  

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Introduction

• Examples

Mobile robots and intelligent vehicles

Robot manipulators

So
ur

ce
 [2

]

So
ur

ce
 [2

]

Introduction

• Examples

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Figure 4: Picture of Lévignac (top left), same view in the 3D model (top right), aerial
view of the 600 meter long 3D model of the itinerary across Lévignac (middle), and
truck carrying a wing from above.

4

l 1

l 2
l 3

m 1
0

ϕ1

ϕ2

ϕθ

Figure 7: Kinematic model of the truck carrying the wing: the trailer is hitched to
the truck via a towbar. This system is kinematically equivalent to a tractor towing
two trailers with hitch kingpin. The configuration space is of dimension 6: q =
(x, y, ✓, '0, '1, '2) where (x, y) denotes the projection of the center of the truck rear
wheel axis on an horizontal plane, ✓ the orientation of the truck, '0 the steering angle,
'1 the orientation of the towbar with respect to the truck and '2 the orientation of
the trailer with respect to the towbar. Notice that the 24 trailer wheels are articulated
in order to avoid sliding.

10

Trailer-truck trajectory optimization for 
Airbus A380 component transportation

So
ur

ce
 [5

]

6 S. M. LaValle: Planning Algorithms

3 54

2

1

Figure 1.2: Remember puzzles like this? Imagine trying to solve one with an
algorithm. The goal is to pull the two bars apart. This example is called the Alpha
1.0 Puzzle. It was created by Boris Yamrom and posted as a research benchmark
by Nancy Amato at Texas A&M University. This solution and animation were
made by James Kuffner (see [558] for the full movie).

combined with methods for planning in continuous spaces, they can solve compli-
cated tasks such as determining how to bend sheet metal into complicated objects
[419]; see Section 7.5 for the related problem of folding cartons.

A motion planning puzzle The puzzles in Figure 1.1 can be easily discretized
because of the regularity and symmetries involved in moving the parts. Figure 1.2
shows a problem that lacks these properties and requires planning in a continuous
space. Such problems are solved by using the motion planning techniques of Part
II. This puzzle was designed to frustrate both humans and motion planning algo-
rithms. It can be solved in a few minutes on a standard personal computer (PC)
using the techniques in Section 5.5. Many other puzzles have been developed as
benchmarks for evaluating planning algorithms.

An automotive assembly puzzle Although the problem in Figure 1.2 may
appear to be pure fun and games, similar problems arise in important applications.
For example, Figure 1.3 shows an automotive assembly problem for which software
is needed to determine whether a wiper motor can be inserted (and removed)
from the car body cavity. Traditionally, such a problem is solved by constructing
physical models. This costly and time-consuming part of the design process can
be virtually eliminated in software by directly manipulating the CAD models.

Alpha 1.0 3D puzzle

So
ur

ce
 [2

]
Motion planning is also called piano mover’s problem

Configuration Space

• Although plans are executed in the Cartesian world (“the workspace”),
motion planning lives in another space: the configuration space

• A robot configuration q is a specification of the positions of all robot 
points relative to a fixed coordinate system

• Usually a configuration is expressed as a vector of positions and
orientations

• Rigid body examples  
with configuration  

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

reference 
direction

reference  
point

reference 
direction

reference  
point

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Configuration Space

• More complex examples

q1

q2

Configuration Space

• The configuration space (also called C-space) is the space of all 
possible configurations

• The topology of this space is usually not that of a Cartesian space

• The C-space is described as a topological manifold

• Example: 2-joint revolute arm in the plane

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

So
ur

ce
 [5

]

wraps around 
horizontally 

and vertically

2-dimensional torus

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Configuration Space

• Example: circular mobile robot in 2D

• The C-space is obtained by sliding the robot along the edge of the
obstacle regions, "blowing them up" by the robot radius

workspace

C-space

(c)(b)(a)

Workspace

C-space

(b) (c)(a)

So
ur

ce
 [3

]

Configuration Space

• Example: polygonal robot, translation only

• The C-space is obtained again by sliding the robot along the edge of 
the obstacle regions

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

workspace

C-space

Configuration Space

• Example: polygonal robot, translation only

• The C-space is obtained again by sliding the robot along the edge of 
the obstacle regions

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

workspace C-space

reference point

Configuration Space

• Example: polygonal robot, translation and rotation

• The C-space is obtained by sliding the robot along the edge of the
obstacle regions in all orientations

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

C-spaceworkspace

So
ur

ce
 [1

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Configuration Space

• Configuration spaces are made up of free space and obstacle regions

• With being the workspace, the set of obstacles, 
 the robot in configuration

• We further define

 : initial configuration

 : goal configuration

• Note that is defined in the workspace and in the C-space

Configuration Space

• Then, motion planning amounts to finding a continuous path

with

such that no configuration in the 
path causes a collision between  
the robot and an obstacle

• What do we gain?

• Given this setting, we can do planning 
with the robot being a point in C-space!

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Configuration Space

• Example: 2-joint revolute arm in the plane with obstacles

So
ur

ce
 [6

]

workspace C-space

obstacle

robot

workspace C-space

workspace C-space

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Configuration Space Discretizations

• In practice, continuous spaces need to be discretized for path planning.
There are two general approaches to discretize C-spaces:

• Combinatorial planning 
Characterize Cfree explicitly by capturing the connectivity 
of Cfree into a graph. Such graphs are also known as roadmaps

• Sampling-based planning 
Randomly probe and incrementally search Cfree for a solution. 
Construct a graph that consist of sampled configurations

• We will first consider four combinatorial planning techniques
• Visibility graphs
• Exact and approximate cell decompositions
• Voronoi diagrams

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Roadmap

• The goal of all these approaches is to produce a roadmap RM

• A roadmap RM is a concise representation of Cfree in form of a graph 
that captures its connectivity. Each vertex is a configuration in Cfree and
each edge is a collision-free path through Cfree

• For a roadmap, the following properties hold
• There is a path from to some

• There is a path from some to

• There is a path in RM between and

• Given a roadmap, a planner can plan paths between configurations  
using graph-based search

• Without loss of generality, we will now consider polygonal worlds in 
 and a point robot that cannot rotate, that is:  

Visibility Graphs

• Idea: construct a graph of all intervisible vertices of obstacles Cobs and
plan a path that connects qI with qG through those vertices
• Obstacle edges also serve as edges in the graph, qI, qG are also vertices

• Graph contains shortest path among polygonal obstacles in the plane

• Best algorithm is O(n2 log n) where n is the number of vertices

• One of the earliest path planning methods (late 1970s)

qI

qG

qI

qG

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

So
ur

ce
 [1

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Exact Cell Decompositions

• Idea: decompose Cfree into non-overlapping cells, then construct
connectivity graph to represent adjacencies

• A well-known method is the trapezoidal decomposition

1. Decompose Cfree into trapezoids with vertical side segments by shooting 
rays upward and downward from each polygon vertex

2. Place one vertex in the interior of every trapezoid, pick e.g. the centroid

3. Place one vertex at the midpoint of every vertical segment

4. Connect the vertices to form the adjacency graph

• Method not defined for more than two dimensions

• Best algorithm: O(n log n) where n is the number of vertices of Cobs

Exact Cell Decomposition

• Trapezoidal decomposition

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

c1

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

c7

c7

c8

c8

c9

c9

c10

c10

c11

c11

c12

c12

c13

c13

c14

c14

c15

c15

qI
qG qI

qG

v13

v10

v11

v12

v8

v0

v1

v4

v5
v7

v2

v3

v6

v9

construct trapezoidal cellsinitial problem

So
ur

ce
 [2

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Exact Cell Decomposition

• Trapezoidal decomposition

c1

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

c7

c7

c8

c8

c9

c9

c10

c10

c11

c11

c12

c12

c13

c13

c14

c14

c15

c15

c1

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

c7

c7

c8

c8

c9

c9

c10

c10

c11

c11

c12

c12

c13

c13

c14

c14

c15

c15

qI
qG

place and
connect
vertices

plan in
adjacency

graph

So
ur

ce
 [2

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Exact Cell Decomposition

• An alternative approach is to perform a triangulation, which in , is a
tiling composed of triangular regions

• There are many ways to triangulate Cfree. Finding the optimal triangulation
is exponentially complex in n

• The problem of characterizing a space, capturing its connectivity into a
graph, or subdividing an object into simplices (triangles in 2D, tetrahedra
in 3D, etc.) are well known problems in computational geometry

So
ur

ce
 [2

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Exact Cell Decomposition for Coverage Planning

• Cell decompositions can generally be used to achieve coverage of Cfree

• A coverage path planner determines a path that passes an end-effector  
(a mobile robot, a spray can, a sensor) over all points in Cfree

• The assumption is that since each cell has a simple structure,  
it can be covered with simple motions 
such as back-and-forth maneuvers

• Coverage planning has 
applications in
• floor care (e.g. domestic  

vacuum robots)

• farming (agricultural 
field robots)

• robotic demining
example living roomexample acre

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Approximate Cell Decompositions

• Exact decomposition methods can be involved to implement and
inefficient to compute for complex problems (large and/or high-
dimensional C-spaces, non-polygonal obstacles, etc.)

• One approach is to approximate Cfree by 
cells with the same simple predefined  
shape

• The simplest case is a grid of rectangular 
cells that are either free or occupied

• The graph is built from nodes at cell corners  
or cell centers and 4- or 8-connected edges

• The resolution of this discretization  
determines the number of cells and the  
quality of the approximation

qI

qG

qI

qG

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Approximate Cell Decompositions

• An efficient variation of this concept are quadtrees in 2D or octrees in 3D

• First used on Shakey the robot (late 1960s)

• First AI-controlled robot. Research on Shakey had several spin-offs:  
grid-based path planning, visibility graphs, A*

So
ur

ce
 [8

]

qI

qG

So
ur

ce
 [8

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Generalized Voronoi Diagram (GVD)

• Defined to be the set of points q whose cardinality of the set of boundary
points of Cobs with the same distance to q is greater than 1

• In other words, the Voronoi diagram 
is the set of points where the  
clearance to the closest obstacles  
is the same

• Regular Voronoi diagrams are defined 
for point obstacles only. In the planar  
case, the diagram is then a collection  
of line segments

• Since obstacles are not points, the 
generalized Voronoi diagram (GVD) is 
defined for general extended obstacles

qI
qG

qI' qG'

So
ur

ce
 [1

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Generalized Voronoi Diagram

• Formally, let be the boundary of Cfree, and the
Euclidian distance between p and q. Then, for all q in Cfree, let

be the clearance of q, and

the set of base/foot points on with the same clearance to q

• The Generalized Voronoi diagram (GVD) is then the set of q's with more
than one base point p

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Generalized Voronoi Diagram

• Geometrically:

• For polygonal Cobs, the diagram consists of lines and parabolic edges

• With n being the number of vertices on , naive algorithms to construct
the diagram have O(n4), the best algorithm has O(n log n)

p
clearance(q)

q
q

q

p
p

p p

one closest pointtwo closest points

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Generalized Voronoi Diagram

• In 2D, Voronoi edges are formed by three types of interactions

• In 3D, things get more complex
Bisector type Voronoi element
point – point plane
point – edge parabolic cylinder
point – triangle paraboloid
edge – edge hyperbolic paraboloid
edge – triangle parabolic cylinder
triangle – triangle plane

edge – edge edge – vertex vertex – vertex
linear edge parabolic edge linear edge

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Generalized Voronoi Diagram

• For robot motion planning, Voronoi diagrams can be used to find clear
routes which are furthest from obstacles

• Example

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Generalized Voronoi Diagram

• For robot motion planning, Voronoi diagrams can be used to find clear
routes which are furthest from obstacles

• Example

So
ur

ce
 [7

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Generalized Voronoi Diagram

• For robot motion planning, Voronoi diagrams can be used to find clear
routes which are furthest from obstacles

• Example

So
ur

ce
 [7

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Generalized Voronoi Diagram

• Computing the GVD exactly is possible for polygonal C-spaces

• In practice, we need to approximate the GVD. Let us consider a method
that discretizes the obstacles:
1. Discretize obstacles by discretizing their boundary

2. Compute regular Voronoi diagram of boundary points

qI

qG

So
ur

ce
 [9

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Generalized Voronoi Diagram

• Computing the GVD exactly is possible for polygonal C-spaces

• In practice, we need to approximate the GVD. Let us consider a method
that discretizes the obstacles:
1. Discretize obstacles by discretizing their boundary

2. Compute regular Voronoi diagram of boundary points

3. Discard GVD edges from two consecutive points of the same obstacle

qI

qG

So
ur

ce
 [9

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Generalized Voronoi Diagram

• Computing the GVD exactly is possible for polygonal C-spaces

• In practice, we need to approximate the GVD. Let us consider a method
that discretizes the C-space:
1. Discretize obstacles onto a regular grid

qI

qG

So
ur

ce
 [9

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Generalized Voronoi Diagram

• Computing the GVD exactly is possible for polygonal C-spaces

• In practice, we need to approximate the GVD. Let us consider a method
that discretizes the C-space:
1. Discretize obstacles onto a regular grid

2. Compute Voronoi diagram by running a wavefront algorithm

qI

qG

So
ur

ce
 [9

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Generalized Voronoi Diagram

• Voronoi diagrams have been well studied for mobile robot motion
planning. Maximum clearance paths are a good idea for robots with
uncertain plan execution

• For mobile robots, fast methods exist to compute the generalized
Voronoi diagram from sensory data (e.g. sonar, laser) in real-time

• Produces natural paths in corridor-like environments such as offices or
man-made buildings

• In general spaces, however, the Voronoi set has a unnatural attraction to
open space and may lead to far-optimal paths

• There are problems with the GVD in higher dimensions. Roadmaps are
not connected anymore. A hierarchy of higher-order GVDs based on the
nth-closest neighbors helps in some cases.

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Combinatorial Planning

• Let us wrap up:

• Combinatorial planning techniques are elegant and, more importantly,
complete: they find a solution if it exists and report failure otherwise

• However, they become quickly intractable when C-space dimensionality
increases (or the number of vertices n of , respectively)

• Combinatorial explosion in terms of vertices to represent the robot , 
the obstacle in the workspace , and the obstacle in the C-space ,
especially when rotative degrees of freedom make C a complex manifold

• Algorithms scale poorly in both space and time complexity

• We therefore consider an alternative group of approaches to discretize 
the configuration space: sampling-based planning

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Sampling-based planning

• In practical planning problems it may be difficult to explicitly represent
Cfree but testing whether a given configuration is in Cfree is easy and fast

• Thus, we abandon the concept of explicitly characterizing Cfree and 
Cobs and leave the algorithm in the dark when exploring Cfree

• The only “light” is provided by a collision-detection algorithm, that probes
C to see whether some configuration lies in Cfree

• Using such methods, we trade completeness guarantees for a 
reduction in planning time

• We will consider two popular sampling-based methods that implement
this idea:
• Probabilistic road maps (PRM)

• Rapidly exploring random trees (RRT)

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Probabilistic Roadmaps (PRM)

• Idea: we approximate Cfree by randomly drawing samples from C, insert
them as vertices into the roadmap if they lie in Cfree, and then try to
connect them with nearby vertices

• Collision checks are carried out in the workspace. Given a configuration  
q, A(q) is computed and checked for collision with O
• If collision occurs, q is in Cobs

• Otherwise, q is in Cfree

• Connecting vertices with 
the roadmap is the task of a  
local planner. It checks if 
moving from q to some 
nearby roadmap vertex q’  
is collision-free So

ur
ce

 [3
]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Probabilistic Roadmaps

• Basic algorithm to construct PRMs

So
ur

ce
 [2

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Probabilistic Roadmaps

• The algorithm comprises the following steps:

• Sampling (function RANDOM_CONFIG): samples are usually
drawn uniformly over C. This is a general scheme that works well
for many planning problems. Specialized non-uniform sampling
strategies may be needed for difficult problems

• Collision check (function CLEAR): carried out in the workspace

• Selecting neighbors (function NEAREST): strategies may select
the k nearest neighbors or all neighbors within a given radius. kd-
trees can be used for speed up

• Local planning (function LINK): the most basic local planner,
applicable to all holonomic robots, connects two configurations
by a straight line-of-sight segment. More complex planners may
be used, e.g. for robots with non-holonomic motion constraints

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Probabilistic Roadmaps

• The local planner discretizes the local path to detect collisions, either
incrementally or by subdivision. The latter method is faster

• What means “nearest”? Choosing a proper distance metric is a difficult
problem in general, e.g. when C is a complex manifold due to rotative
degrees of freedom. Requires task-specific choices, active area of research

• The termination condition may be the number of vertices to put into the
roadmap or a maximal density of nodes. The roadmap should be dense
enough to always be able to connect qI and qG

incremental: 5 checks needed binary: 3 checks needed

So
ur

ce
 [3

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Probabilistic Roadmaps: Sampling

• PRMs have problems with narrow 
passages. Such cases require 
specialized sampling strategies
• Examples include: sampling near 

obstacles, bridge sampling, GVD- 
inspired sampling, random-bounce 
walks, deterministic or quasi-random 
sampling

• Care has also to be taken when sampling non-
Euclidian spaces such as spaces of rotations:
sampling Euler angles uniformly gives more
samples near poles, not uniform over SO(3).
Use alternative ways to represent rotations
such as quaternions or Hopf coordinates

qI

qG

narrow passage

Diaconis, Holmes, Shahshahani/Sampling From A Manifold 2

0 ✓, < 2⇡ for R > r > 0. The torus is formed by taking a circle of radius r in the (x, z)
plane, centered at x = r, z = 0 and rotating it around the z axis.

Formula (1.1) gives the embedding of M as a compact 2-dimensional manifold in R3. As
such,M inherits a natural area measure: roughly, take a region onM, thicken it out by ✏ to be
fully 3-dimensional, compute the usual volume of the thickened region and take the limit of this
area divided by ✏ as ✏ �! 0. This area measure can be normalized to be a probability measure
H̄2(dx) onM. The points shown are sampled from H̄2(dx).

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

**

*

*
*

*
*

*

*

*

*

*
*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
* *

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

**
*

*

**

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

** *

*

*

*

*

**

* *

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*

*
*

*

*

*

*
*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*
*

*
*

*

*

*

*
*

*

*

*
*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*
** *

*

*

* *

*

*

*

*

*

*
*

*

*

*
*

*

*

* *

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* **

*
**

*

* *

*

*

*

*

*

*

*

*

*

* **

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*

*
*

**

*

*
*

*
*

*
*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*

*

* *

*

*

**
*

*

**
*

*

**
*

*

*

*
*

*

*
**

**

*

*

*

*

*

*

*

*
**

*

*
*

*
*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
* *

**

*

*

*

**

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

* *

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

* *
*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

**

*
**

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*

*

*

*
*

*

* *

*

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

* ***

*

*

*

*

*
*

*

*

*

*

*

*

*

* *

*

*

*

*

*

**

*

* *

*
*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*

*

** *

*

*

*

*

*

*

*

*

** *

*

*

*

*

*

*

*

*

*
**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

* **

*

*

*

*
* *

*

*

*

* *

*

*

*

*

*

*

*

*

*
*

**

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*
**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

* *

*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

* *

**

*

*
*

*

*

**

*
* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*
** *

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

−2 −1 0 1 2

−2
−1

0
1

2

Figure 1: A sample of 1000 points from the area measure on a torus with R=1,r=0.9

Note that the sampled points are denser in regions with higher curvature such as the inside
of the torus. This distribution is di↵erent from the näıve choice: choose ✓ and uniformly and
map ontoM using (1.1). Figure (2.3) show both correctly and incorrectly generated points, see
next section.

Such samples, with noise added, are used to calibrate topological algorithms for estimating
dimension, number of components and homology in the emerging field of topological statistics.
Examples such as two linked tori on the seven sphere and Klein bottles are shown to come up
naturally in image analysis (Carlsson et al., 2006).

Example 1B: Testing the Gamma Distribution For fixed n � 3, S, P > 0, let

M =
n

(x1, . . . , xn

); x
i

> 0,
n

X

i=1

x
i

= S,
n

Y

i=1

x
i

= P
o

. (1.2)

This is a compact (n� 2)-dimensional submanifold in Rn. The need for samples fromM comes
up in testing if random variables X1, X2, . . . ,Xn

are independently drawn from the Gamma
density

e�x/�xa�1

�a�(a)
0 < x <1, (1.3)

sampling on a torus

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Probabilistic Roadmaps

• After the roadmap has been constructed (also called “learned”) there is the
query phase (analogue to the application phase of a classifier)

• A query consists in passing qI and qG to a PRM planner which computes
the path from qI to qG by connecting them to the roadmap and planning a
path between the connection points and

• Once a roadmap has been  
created, it can be used to  
process multiple queries 
very efficiently

• Only when the workspace or  
robot changes (e.g. dynamic 
obstacles or loaded cargo),  
a roadmap needs to be rebuilt So

ur
ce

 [3
]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Probabilistic Roadmaps

• PRM paths are examples of feasible  
but non-optimal paths: solutions 
are typically jagged and overly long

• A popular path post-processing 
technique is smoothing: try to 
connect non-adjacent nodes along 
the path (either sampled or chosen 
greedily) with the local planner

• An important theoretical result is that probabilistic roadmaps are
probabilistically complete: the probability of finding a solution if one
exists tends to one

• However, when there is no solution (path is blocked), the planner may
run forever. This is of course weaker than combinatorial planners that are
able to report failure after a finite time

Original Path
Shorter Path

qinit

qgoal

path post-processing

qG

qI

So
ur

ce
 [3

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Probabilistic Roadmaps

• Despite its lack of optimality and completeness, sampling-based
methods, and in particular PRMs, are the preferred choice for most
practical planning problems

• Combinatorial methods are rarely tractable for robots with more than
three degrees of freedom. PRM planners were able to solve problems 
that were previously unsolved

• The goal of PRMs are to create a roadmap that captures the connectivity
of Cfree and to answer multiple queries very fast

• In many planning problems, however, we are only interested in single
queries. Instead of focussing on the exploration of C, single-query
planners attempt to solve a planning problem as fast as possible

• An important single-query sampling-based technique: RRTs

Rapidly-Exploring Random Trees (RRT)

• Idea: aggressively probe and explore the C-space by expanding
incrementally from an initial configuration q0

• The explored territory is marked by a tree rooted at q0

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

after 45 iterations after 2’345 iterations

q0

So
ur

ce
 [2

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Rapidly-Exploring Random Trees

• Basic RRT algorithm

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Rapidly-Exploring Random Trees

• Unlike PRMs that connect newly sampled configurations to a set of
nearest neighbors, RRT selects a single neighbor

• Again, what means “nearest” on a manifold? Requires the choice of a
proper distance metric

• Instead of discarding qrand when the 
local planner reports a collision,  
we can also add the configuration  
along the local path which is 
closest to Cobs

• qrand may not be reachable from qnear also due to other reasons than
collision with obstacles (such as kinodynamic constraints). Thus, it is most
general to say that the tree can only be extended by a configuration qnew
close to qrand and the corresponding edge from qnear to qnew

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Rapidly-Exploring Random Trees

• So far, there is little consideration of the goal qG for growing the tree.  
The basic algorithm usually terminates by checking if qrand (or qnew) 
is near the goal (“has reached the goal region”)

• Inducing a gentle bias toward the goal can accelerate the method
• Seed a tree at qI

• At every, say, 100th iteration, force qrand = qG

• If qG is reached, problem is solved

• Picking qG every time would fail and waste much effort in bumping into
Cobs instead of exploring the space

• However, some problems require more effective methods. One way is to
perform bidirectional search

Rapidly-Exploring Random Trees

• Bidirectional RRT grow two trees, one from qI, one from qG

• In every other step, the method tries to extend each tree towards the
newest vertex of the other tree

• Examples

local minima (filling a well) one-way door (bug trap)

6 S. M. LaValle: Planning Algorithms

3 54

2

1

Figure 1.2: Remember puzzles like this? Imagine trying to solve one with an
algorithm. The goal is to pull the two bars apart. This example is called the Alpha
1.0 Puzzle. It was created by Boris Yamrom and posted as a research benchmark
by Nancy Amato at Texas A&M University. This solution and animation were
made by James Kuffner (see [558] for the full movie).

combined with methods for planning in continuous spaces, they can solve compli-
cated tasks such as determining how to bend sheet metal into complicated objects
[419]; see Section 7.5 for the related problem of folding cartons.

A motion planning puzzle The puzzles in Figure 1.1 can be easily discretized
because of the regularity and symmetries involved in moving the parts. Figure 1.2
shows a problem that lacks these properties and requires planning in a continuous
space. Such problems are solved by using the motion planning techniques of Part
II. This puzzle was designed to frustrate both humans and motion planning algo-
rithms. It can be solved in a few minutes on a standard personal computer (PC)
using the techniques in Section 5.5. Many other puzzles have been developed as
benchmarks for evaluating planning algorithms.

An automotive assembly puzzle Although the problem in Figure 1.2 may
appear to be pure fun and games, similar problems arise in important applications.
For example, Figure 1.3 shows an automotive assembly problem for which software
is needed to determine whether a wiper motor can be inserted (and removed)
from the car body cavity. Traditionally, such a problem is solved by constructing
physical models. This costly and time-consuming part of the design process can
be virtually eliminated in software by directly manipulating the CAD models.

The Alpha 1.0 3D puzzle can be
solved using the bidirectional

RRT in a few minutes

So
ur

ce
 [2

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Rapidly-Exploring Random Trees

• RRTs have initially been developed for kinodynamic motion planning, that
is, motion planning under kinematic and dynamic constraints

• The basic RRT algorithm can be easily extended for planning under such
constraints

• Let us consider a wheeled differential-drive  
robot with controls where v is the 
translational and ω the angular robot velocity

• Example of non-holonomic constraints: 
the robot can go anywhere but not by 
following any trajectory

• Thus, the original local planner, which 
connects new vertices to the tree over 
linear edges, cannot be used anymore

Rapidly-Exploring Random Trees

• Let us precompute some controls and use them as a sort of “prefabricated
edges” to connect new vertices to the tree

• Such sets of precomputed controls are called motion primitives

• Like linear edges, 
they consist of 
many nearby 
points that allow  
for incremental or 
binary collision  
checking

• When extending the 
tree to a new configuration qrand, we then select the motion primitive  
that comes closest to qrand. Its terminal point becomes qnew

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x [m]

y
[m

]

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x [m]

y
[m

]

Example sets with 10 (left) and 77 (right) motion primitives

Rapidly-Exploring Random Trees

• Basic RRT under kinodynamic constraints

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Rapidly-Exploring Random Trees

• Example using  
three motion 
primitives

• The number and shape  
of motion primitives  
are parameters with a  
strong effect on the 
resulting tree and the 
performance of  
the algorithm

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

qG

Rapidly-Exploring Random Trees

• Example using  
three motion 
primitives

• The number and shape  
of motion primitives  
are parameters with a  
strong effect on the 
resulting tree and the 
performance of  
the algorithm

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

qG

Rapidly-Exploring Random Trees

• Example using  
three fun motion 
primitives

• Robot can go only 
straight or make 
left turns

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

qG

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Sampling-Based Planning

• Let us wrap up:

• Sampling-based planners are more efficient but have weaker  
guarantees

• They are probabilistically complete: the probability tends to one that a
solution is found if one exists. Otherwise they may still run forever

• It is easy to construct examples that cause sampling-based algorithm to
fail or converge slowly. In some cases (e.g. narrow passages), problem-
specific heuristics can be developed

• Problems with high-dimensional and complex C-spaces are still also hard
for sampling-based methods

• However, they have solved previously unsolved problems and have
become the preferred choice for many practical problems

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Potential Field Methods

• All techniques discussed so far aim at capturing the connectivity of Cfree
into a roadmap

• Potential field methods follow a different idea: the robot, represented as a
point in C, is modeled as a particle under the influence of a artificial
potential field U

• A potential field (or potential function) U is a differentiable real-valued
function

• The value of U can be seen as an energy or superposition of forces

• Repulsive forces from obstacles
• Attractive force from the goal

+ =

Potential Field Methods

• Potential function

• The gradient of U is a vector which points in the direction 
that locally maximally increases U

• The (negative) gradient directs the robot to the goal, avoiding obstacles

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Potential Field Methods

• Example with three circular obstacles

• The gradient defines a vector field that can be used as feedback control
strategy, relevant for an uncertain robot

• Gradient descent, a well-know optimization problem, has particularly
simple implementations when C is discretized as a grid

(a) (b) (d)(c)

qstart

qgoal

So
ur

ce
 [3

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabRobot Motion Planning

Potential Field Methods

• One of the major problems of potential field methods are local minima

• A solution are so called navigation functions, local-minima-free potential
function (e.g. NF1). Then, gradient descent works

• Do not work in general configuration spaces, only in a limited class

• However, potential fields need to represent Cfree explicitely. This is, as we
have learned, too costly in many practical motion planning problems

qgoal

qgoal

So
ur

ce
 [3

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabReferences

Sources and Further Reading

These slides partly follow the books of Latombe [1], LaValle [2], and Choset et al. [3].
Chapters 5 and 6 of [4] are well-written compact introductions to the field. Some GVD-
related pictures have been taken from the lecture notes by Johnson [9]. You are also
encouraged to try the nice and instructive online applets [6] and [7]. Readers interested in
AI/robotics history, refer to the amazing work by Nilson and colleagues [8].

[1] J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, 1991

[2] S. LaValle, Planning Algorithms, Cambridge University Press, 2006. See http://
planning.cs.uiuc.edu

[3] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, S. Thrun,
Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, 2005. See
http://biorobotics.ri.cmu.edu/book

[4] B. Siciliano, O. Khatib (editors), Handbook of Robotics, Chapters 5 and 6, Springer,
2008. See http://www.springer.com/engineering/robotics/book/978-3-540-23957-4

[5] F. Lamiraux, J. P. Laumond, C. VanGeem, D. Boutonnet, and G. Raust, “Trailer-truck
trajectory optimization for Airbus A380 component transportation,” IEEE Robotics and
Automation Magazine, 2003

http://planning.cs.uiuc.edu
http://biorobotics.ri.cmu.edu/book

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabReferences

Sources and Further Reading

[6] Planar Robot Simulator with Obstacle Avoidance Applet, by K. Goldberg, E. Lee, J.
Wiegley, http://ford.ieor.berkeley.edu/cspace

[7] P. Blear, Path Planning Applet, http://www.cs.columbia.edu/~pblaer/projects/
path_planner/applet.shtml

[8] N.J. Nilson, “A mobile automaton: an application of artificial intelligence techniques”,
1st Int. Joint Conference on Artificial Intelligence (IJCAI), 1969. See http://www.ai.sri.com/
pubs/files/tn040-nilsson69.pdf

[9] D.E. Johnson, “CS 6370: Motion Planning”, lecture notes, University of Utah, 2011

http://ford.ieor.berkeley.edu/cspace
http://www.cs.columbia.edu/~pblaer/projects/path_planner/applet.shtml
http://www.ai.sri.com/pubs/files/tn040-nilsson69.pdf

