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Introduction 

• Detection is knowing the presence of an object, possibly with some 
attribute information 

• Tracking is estimating the state of a moving object over time based on 
remote measurements 

• Tracking also involves maintaining the identity of an object over time 
despite detection errors (FN, FP) and the presence of other objects 

• Tracking may involve estimating the state of several objects at a time. This 
gives rise to origin uncertainty, that is, uncertainty about which object 
generated which observation 

• Data association addresses the origin uncertainty problem. It’s the process 
of associating uncertain measurements to known tracks 

• Data association may involve interpreting measurements as new tracks, 
false alarms or misdetections and tracks as occluded or terminated



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabTracking and Data Association

Introduction 

• Imagine watching a rare exotic bird flying through dense jungle foliage 

• You can only glimpse brief, intermittent flashes of motion 

• Occlusion from foliage and trees makes it hard to guess where the bird is 
and where it will appear next 

• There are many birds, they may even look alike 

• It is hard to differentiate between bird and background

Example from [2]
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Introduction: Applications

maritime surveillance 
and port traffic control

air traffic control

robotics and HRI motion capture
military 

applications

surveillance

fleet management
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Introduction 

• Problem Statement of Tracking: 

• Given an LDS model with parameters transition model, observation 
model and prior, we want to compute state estimates in a way that their 
accuracy is higher than the raw measurements and that they contain 
information not available in the measurements (e.g. identity, velocity, 
or accelerations) 

estimated 
trajectoryground truth 

trajectory

measurements
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Introduction 

• Error Types  

• Uncertainty in the values of measurements (“noise”). 
Solution: filtering 

• Uncertainty in the origin of measurements due to false alarms, 
multiple targets, or decoys and countermeasures. 
Solution: data association 

 Tracking = Data association + Filtering                                
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Introduction: Problem Types 

• Track stage (track “life cycle”) 
• Track formation (initialization) 
• Track maintenance (continuation) 
• Track termination (deletion) 

• Number of sensors  
• Single sensor 
• Multiple sensors 

• Sensor characteristics  
• Detection probability PD  

(true positive rate) 
• False alarm rate PF  

(false positive rate) 

• Target behavior  
• Non-maneuvering (straight  

or quasi-straight motion) 
• Maneuvering 

(makes turns, stops, etc.) 

• Number of targets  
• Single target 
• Multiple targets 

• Target size  
• Point-like target 
• Extended target 
• Groups of targets
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Introduction: Track Stage 

Formation  

• When to create a new track? 

• What is the initial state? 

• Greedy initialization heuristics  
• Every observation that cannot be 

associated is a new track 

• Initialize position from observation, 
heuristics for derivatives e.g. velocity 

• Lazy initialization  
• Wait and look for sequences of 

unassociated observations  

• Initialize position and higher order 
derivatives from sequence 

Occlusion vs. Deletion  

• When to delete a track? 

• Or is it just occluded? 

• Greedy deletion heuristics  
• Delete track as soon as no 

observation can be associated to it 

• No occlusion handling 

• Lazy deletion  
• Delete if no observation can be 

associated for several time steps 

• Implicit occlusion handling
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Introduction: Tracking Algorithms 

• Single non-maneuvering target, no origin uncertainty  
• Kalman filter (KF) or extended Kalman filter (EKF) 

• Single maneuvering target, no origin uncertainty  
• KF/EKF with variable process noise  

• Multiple model approaches (MM) 

• Single non-maneuvering target, origin uncertainty  
• KF/EKF with nearest/strongest neighbor data association 

• Probabilistic data association filter (PDAF) 

• Single maneuvering target, origin uncertainty  
• Multiple model-PDAF (MM-PDAF)
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Introduction: Tracking Algorithms 

• Multiple non-maneuvering targets  
• Joint probabilistic data association filter (JPDAF) 

• Multiple hypothesis tracker (MHT) 

• Markov chain Monte Carlo data association (MCMCDA) 

• Multiple maneuvering targets  
• MM-variants of MHT (e.g. IMMMHT) 

• MM-variants of other data association techniques 

• Other Bayesian filtering schemes such as particle filters have also been 
successfully applied to the tracking problem. They are currently not 
covered here. See references.
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Validation Gate 

• We have already seen the statistical compatibility test in the  
Kalman filter cycle: 
1. Predict measurement based on the predicted track state. 

This gives an area in sensor coordinates where to expect the next observation. 

2. Make observations. 
Observations may be raw sensory data or the output of a target detector  

3. Check if the actual measurement lies close to the predicted measurement in 
terms of the squared Mahalanobis distance. If the distance is smaller than a 
threshold from a cumulative       distribution, then they form a pairing or match 

• The area around the predicted measurement in which pairings are 
accepted is called validation gate or validation region 

• This procedure is also called validation gaiting or simply gaiting  

• Let us take a closer look at the validation gate
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Validation Gate 

What makes this a difficult problem: 

• Multiple targets. 
May lead to association 
ambiguity when 
several measurements 
are in the gate 

• False alarms 
(false positives) 

• Detection uncertainty,  
occlusions, misdetections 
(false negatives)

z1

z2

z3

z4

ẑ2

ẑ1

ẑ3

    validation 
region of 

    validation 
region of 
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Validation Gate 

• The validation test implies that measurements                    are distributed 
according to a Gaussian distribution, centered at the measurement 
prediction                    with covariance                   . Skipping time indices, 

• This assumption is called measurement likelihood model 

• Then, with                               being the squared Mahalanobis distance of a 
pairing, measurements will be in the area 

with a probability defined by the gate threshold  

• This area is the validation gate
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Validation Gate 

• The shape of the validation gate is a hyperellipsoid 

• This follows from the measurement likelihood model set to 

leading to                              which describes a conic section in matrix form 

• The validation gate is an iso-probability contour obtained when 
intersecting a Gaussian with a hyperplane 
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Validation Gate 

• Why a      distribution? 

• We remember that if several x‘s form a set of k i.i.d. standard normally 
distributed random variables 

• Then, variable q with 

follows a      distribution with k degrees of freedom 

• We will now show that the Mahalanobis distance is a sum of squared 
standard normally distributed random variables
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Validation Gate 

• Assume 1-dimensional observations and 

• The 1-dimensional Mahalanobis distance is then  

• By changing variables                           , we have 

• Thus,                  and is       distributed with 1 degree of freedom
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Validation Gate 

• Assume n-dimensional observations and 

• The n-dimensional Mahalanobis distance is then  

• By changing variables                                     with                         , we have 
                            and therefore 

which is       distributed with k degrees of freedom 

• C  is obtained from a Cholesky decomposition



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabTracking and Data Association

Validation Gate 

• Where does the threshold     come from? 

•      is typically written as          . The value is taken from the inverse      
cumulative distribution at a level      and k degrees of freedom 

• The values are typically given in tables, e.g. in statistics textbooks or by 
the Matlab function chi2inv 

• Given the level     , we can now understand the interpretation of the 
validation gate 

• Typical values for      are 0.95 or 0.99 

The validation gate is a region of acceptance such that                         
                            of true measurements are rejected
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Validation Gate 

• How does the Mahalanobis 
distance look geometrically? 

• Euclidian distance  
accounts for 

Position 

Uncertainty 

Correlations 

• It seems that 1–a 
and 2–b belong 
together Observations Measurement predictions

z1

z2

za

zb

d1−a= 2.24

d1−b= 3.16

d2−a= 2.92

d2−b= 1.58
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Validation Gate 

• How does the Mahalanobis 
distance look geometrically? 

• Mahalanobis distance 
with spherical covariance 
matrices accounts for 

Position 

Uncertainty 

Correlations 

• Now 2–b is furthest away.  
It seems that 1–a belong  
together, situation for 2 
and b unclear

z1

z2

za

zb

d1−a= 1.6

d1−b= 2.81

d2−a= 3.07

d2−b= 3.41

Observations Measurement predictions
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Validation Gate 

• How does the Mahalanobis 
distance look geometrically? 

• Mahalanobis distance 
accounts for 

Position 

Uncertainty 

Correlations 

• It’s actually 2–a and 1–b  
that belong together! 

• Mahalanobis distance can  
be seen as a generalization 
of the Euclidian distance

z1

z2

za

zb

d1−a= 6.05

d1−b= 2.77

d2−a= 2.45

d2−b= 4.78

Observations Measurement predictions
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False Alarm Model 

• False alarms (a.k.a. false positives, false detections) may come from sensor 
imperfections, detector failures, or clutter 

• Clutter is unwanted echoes such as 
atmospheric turbulences. Originates 
from the “classical” radar tracking 
domain 

• So, what’s inside the gate 
• A measurement from the tracked object? 

• A false alarm? 

• How to model false alarms? 
• Uniform over the sensor field of view 

• Independent across time 



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabTracking and Data Association

False Alarm Model 

• Assume (temporarily) that the sensor field of view V  is discretized into 
N discrete cells ci , i = 1,...,N (like pixels) 

• In each cell, false alarms occur with probability PF 

• Assume independence of false alarm events across cells 

• The occurrence of false alarms is a Bernoulli process with probability 
of success PF  (flipping an unfair coin) 

• Then, the number of false alarms mF  per 
time step follows a binomial distribution 

with expected value
0 10 20 30 40
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False Alarm Model 

• Let the spatial density     be the number of false alarms over space 

• If                  and                  , that is, we reduce the cell size and approach the 
continuous case, then the above Binomial becomes a Poisson distribution 

• This is the probability mass function of the 
number of false alarms in the volume V  
in terms of the spatial density 
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False Alarm Model 

• The spatial distribution of false alarm is, based on the same assumptions, 
uniform over the sensor field of view V 

• Thus, the density of the location of of a false alarm is  

• In practice, this distribution may be non-uniform when PF, and 
consequently    , vary over space (e.g. detector performance varies  
in front of different backgrounds) 

• Persistent sources of false alarms or clutter may also exist (e.g. from 
reflections, emitters, or background objects with target-like appearance) 

• One approach is to learn a background model
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Single-Target Data Association 

Assumptions  
• A single target to track 

• Track already initialized 

• Detection probability PD < 1 

• False alarm probability PF > 0 

Two groups of approaches  

• Non-Bayesian: no association probabilities 
• Nearest neighbor standard filter (NNSF) 
• Strongest neighbor standard filter (SNSF) 
• Track splitting filter 

• Bayesian: computes association probabilities 
• Probabilistic data association filter (PDAF)
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Nearest Neighbor Standard Filter (NNSF) 

• In each step 

1. Compute Mahalanobis distance to all measurement  
2. Validate the measurements by gaiting 
3. Accept the closest validated measurement 
4. Update the track as if it were the correct one 

• With some probability the selected measurement is not the correct one 

•  Incorrect associations can lead to 
• overconfident covariances (covariances collapse in any case) 

• filter divergence and track loss
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Strongest Neighbor Standard Filter (SNSF) 

• In each step 

1. Compute Mahalanobis distance to all measurement  
2. Validate the measurements by gaiting 
3. Accept the strongest validated measurement 
4. Update the track as if it were the correct one 

• This technique makes sense if there is a confidence measures or signal 
strength associated with each measurement 

• A conservative variant of NNSF and SNSF is to not associate in case of 
ambiguities (“waiting for better weather”)
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Track Splitting Filter 

• In each step 

1. When there is more than one measurement in the validation  
gate, split the track  

2. Update each split track with the standard Kalman filter equation 
3. Compute the likelihood of each track 
4. Take a keep/discard decision by thresholding the likelihood 

• Exponential growth of number of tracks, unlikely tracks are discarded  

• The track likelihood describes the goodness of fit of the observations  
to the assumed target model 

• There is no competition between the tracks because their likelihoods 
are computed separately and not jointly/globally
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Single-Target Data Association 

• The previous three approaches achieve decent performance in well-
behaved conditions (detection probability PD  close to 1, false alarm 
probability PF  close to zero) 

• What if conditions are more challenging in terms of origin uncertainty? 

• This may occur when measurements 
that originate from target are weak  
with respect to background signals 
and sensor noise 

• Integrating false measurements in a 
tracking filter leads to divergence 
and track loss 

• Let us thus consider a more robust  
method
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Probabilistic Data Association Filter 

• Unlike the previous three approaches, the probabilistic data association 
filter (PDAF) is a Bayesian approach that computes the  
probability of track-to-measurement associations 

• Idea: Instead of taking a hard decision, the PDAF  
updates the track with a weighted average of 
all validated measurements 

• The weights are the individual association 
probabilities 

• Let us define the association events  

where m(k) is the number of validated measurements at time index k

zi

zj

zk

zl

za zb



Probabilistic Data Association Filter 

• The PDAF makes the following assumptions: 

• Among the m(k) validated measurements, at most 
(i.e. maximal) one of the validated observations  
is target-originated – provided the target (the 
tracked object) was detected and its observation  
fell into the validation gate 

• The remaining measurements are due to false 
alarms and are modeled with uniform spatial 
distribution and the number of false alarms 
obeys a Poisson distribution (the previously 
considered false alarm model) 

• Targets are detected with known probability PD  

• Later, we will also consider track-specific probabilities
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Probabilistic Data Association Filter 

• We can visualize association events in a tree 

• Each root-to-leaf branch can be seen as an association hypothesis

zi

zj

zk

zl

za zb
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Probabilistic Data Association Filter 

• For each association event           , we define the association probability 
                            conditioned on Zk, the observation history until time k                            

• It can be shown that this becomes (derivation skipped) 
 
 
 
 
 
 
where 

is the likelihood ratio of validated measurement             originating from the 
tracked object rather than being a false alarm



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabTracking and Data Association

Probabilistic Data Association Filter 

• For an interpretation of this result, let us ignore the normalizing 
denominators and consider the event that none of the validated 
measurements is the correct one, that is i = 0 

• Parameter PG is the gate probability, the probability that the gate 
contains the true measurement if detected. Given by threshold  

• PDPG is the probability that the target has been detected and its 
measurement has fallen into the validation gate 

• Thus, 1–PDPG is the probability that the target has not been detected or 
its measurement has not fallen into the validation gate
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Probabilistic Data Association Filter 

• In the case that validated measurement             with i = {1, ... , m(k)} is 
the correct one, the likelihood ratio 

 
trades off the probability that the measurement is target-originated with 
Gaussian density scaled by PD versus the spatial uniform Poisson density 
for false alarms 

• The discrimination capability of the PDAF relies on the difference between 
the Gaussian and uniform densities  

• The association probabilities sum up to one,                                , because 
the association events are mutually exclusive and exhaustive
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Probabilistic Data Association Filter 

• We will now consider the state and the covariance update of the PDAF 

• The state update equation of the PDAF is the 
same as in the Kalman filter  
 
 
 
but uses a combined innovation 
 
 
 
 
that sums over all m(k) association events  
incorporating all validated measurements 

• The combined innovation is a Gaussian mixture
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zj

zk

zl

za zb
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Probabilistic Data Association Filter 

• With the combined innovation, the covariance update of the PDAF is  

• It contains three terms (derivation skipped) 

• With probability       none of the measurements is correct, the predicted covariance 
appears with this weighting ("no update") 

• With probability                  the correct measurement is available and the posterior 
covariance appears with this weighting 

• Since it is unknown which if the m(k) validated measurements is correct, the term 
     increases the covariance of the updated state. This increase is the effect of the 
measurement origin uncertainty 

• Covariance      is the called spread of innovations
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Probabilistic Data Association Filter 

• All other calculations in the PDAF 
• state prediction 

• state covariance prediction 

• innovation covariance 

• Kalman gain 

are the same as in the standard Kalman filter 

• The only difference is in the use of the combined innovation in the state 
update and, as a consequence, the increased covariance of the updated 
state 

• Comparing to the nearest neighbor standard filter, the PDAF can be  
seen as an “all neighbors” filter 

• The computational requirements of the PDAF are modest, about double 
compared to the Kalman filter
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Probabilistic Data Association Filter 

• Example results 

NNSF
PDAF
False alarm
Target 
observation

So
ur

ce
 [4

]

State covariance 
prediction

  

• Tracking in the presence of false 
alarms and misdetections 

• At k = 3 there is no target detection 
but a false alarm 

• The PDAF, accounting for the origin 
uncertainty, attaches a low 
probability that this measurement is 
target originated and, consequently, 
its prediction covariance in the next 
step is very large 

• The NNSF tracker uses the false 
measurement as if it were true one 
and loses the target
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Probabilistic Data Association Filter 

• Example results 

DECEMBER 2009 « IEEE CONTROL SYSTEMS MAGAZINE 95
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The target trajectory is generated without process noise. 
Note that (75)–(77) are standard kinematic equations rep-
resenting the integration of the velocity into position, while 
(78)–(80) show the acceleration components as a function 
of the net thrust and local gravity. 

The measurements are obtained from two passive sen-
sors that measure the azimuth and elevation angles of the 
line of sight to the target with standard deviation 0.1 mrad. 
The sensors are located on satellites. The sampling period 
is 1 s, and 100 frames are available from each sensor. 

An EKF is used to track this target in a clutterless environ-
ment. The state equation is integrated numerically between 
sampling times to predict the state. First-order linearization 
of both dynamic and measurement equations is used for 
covariance calculations. To make the resulting filter consis-
tent, a process noise equal to 1% of the updated state covari-
ance is used in the EKF (see [5, Sec. 10.4]). The measurements 
from the two sensors are processed sequentially according to 
the algorithm presented in [3, Sec. 2.2]. 

The EKF reaches steady state after about ten measure-
ments. The resulting 99% validation region for the measure-
ments, with each measurement from each sensor having 
dimension two, has gating threshold g5 9.2, which is des-
ignated as the standard gate. This gate is used as the basis 
for defining the clutter density r.  In the simulations, false 
measurements, that is, the clutter points, are generated, 
starting at k5 10, with a uniform pdf for their location with 
various spatial densities. Various measures of performance 
are evaluated versus r,  the expected number of false mea-
surements in the standard gate defined above. 

The nonparametric version of the PDAF is used in this 
example, so that no knowledge of the spatial density of 
false measurements is needed. A diffuse prior models the 
number of false measurements in the validation region. 
The purpose of the simulations is to examine the tracking 
capability of the PDAF in comparison with the NNSF as 
the clutter density increases, which leads to track loss. 
The percentage of lost tracks is estimated from Monte 
Carlo simulations. 

Figure 5 presents the percentage of lost tracks from 50 
Monte Carlo runs for the PDAF and NNSF. A track is con-
sidered lost when the correct measurement is not in the 
99% validation region of at least one of the sensors for the 
previous 20 sampling times. This definition is reasonable 
since in this case the final errors are large. 

The simulation results show that the PDAF can track 
reliably up to a clutter density for which the expected 
number of false measurements in the standard (NNSF) gate 
is r5 2. The average number of false measurements in the 
PDAF gate is larger than in the NNSF gate because the 
PDAF covariance is increased according to (42). The NNSF 
is “optimistic” (its calculated covariances are too small) 

and has a substantially higher percentage of lost tracks 
than the PDAF due to its unwarranted optimism. 

The second measure of performance for this problem is 
the filter estimation error. Figures 6 and 7 show the average 
position and velocity estimation errors for PDAF, respec-
tively, from 50 runs, for two values of r,  compared to the 
average error in the clutterless environment. It is notable 
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FIGURE 5 Comparison of tracking capability in terms of percentage of 
lost tracks between the probabilistic data association filter (PDAF) and 
the nearest neighbor standard extended Kalman filter EKF (NNSEKF). 
The PDAF allows reliable tracking up to a clutter level of two false 
measurements in the validation gate, at which level NNSEKF has a 
track loss probability of about 1/3, which makes NNSEKF unreliable.
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FIGURE 6 Position estimation errors for PDAF. The error increases 
in the presence of clutter because of the added measurement 
origin uncertainty. 
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• Tracking in the presence of false 
alarms and misdetections 

• The PDAF allows reliable tracking 
up to a clutter level of two false 
alarms in the validation gate, at 
which level the NNSF tracker has a 
track loss probability of about 30%



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabTracking and Data Association

Probabilistic Data Association Filter 

• Example results 
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Single-Target Data Association: Wrap Up 

• NNSF 
• The NNSF takes hard association decisions. These hard decisions are sometimes 

correct and sometimes wrong 

• NNSF is simple to implement and works well in well-behaved conditions 

• Track splitting filter 
• Instead of taking association decisions, the track splitting filter grows a tree of tracks 

from association ambiguities and relies on the track likelihood as a goodness of fit 
measure for pruning. Rarely used in practice 

• PDAF 
• The PDAF makes soft decisions, it averages over all validated association possibilities. 

This soft decision is never totally correct but never totally wrong. This is why the PDAF 
is a suboptimal strategy 

• Compared to the NNSF, the PDAF can significantly improve tracking in regions of high 
false alarm densities
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Multi-Target Data Association 

Assumptions  
• Multiple targets to track 

• Tracks already initialized 

• Detection probability PD < 1 

• False alarm probability PF > 0 

Two groups of approaches  

• Non-Bayesian: no association probabilities 
• Nearest neighbor standard filter (NNSF) 
• Global nearest neighbor standard filter (GNN) 

• Bayesian: computes association probabilities 
• Joint probabilistic data association filter (JPDAF) 
• Multiple hypothesis tracking (MHT) 
• Markov chain Monte Carlo data association (MCMCDA)

Multi-Target DA: NNSF 
Nearest Neighbor Standard Filter (NNSF) 

1.  Build the assignment matrix              with 

!  Rectangular 

!  Square 

measurement 
in the gate of 
several tracks
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Nearest Neighbor Standard Filter 

• Let us revisit the NNSF for multiple targets 

• We introduce the assignment matrix 
 
 
with 

• For the shown example

Multi-Target DA: NNSF 
Nearest Neighbor Standard Filter (NNSF) 

1.  Build the assignment matrix              with 

!  Rectangular 

!  Square 

2 tracks 
6 observationstr

ac
ks

observations
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Nearest Neighbor Standard Filter 

• In each step 

1. Build the assignment matrix  
2. Iterate as long as closest pairing passes the gaiting test 

• Find the closest pairing in A 
• Remove the row and column of that pairing 

3. Update all tracks as if the associations were the correct ones 
4. Unassociated tracks can be used for track deletion, unassociated 

observations can be used for track initialization 

• Problem: generally does not find the global minimum (greedy algorithm) 

• Conservative variant: no association in case of ambiguities
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Global Nearest Neighbor Standard Filter (GNN) 

• In each step 

1. Build the assignment matrix  
2. Solve the linear assignment problem  

• Hungarian method for square matrices 

• Munkres algorithm for rectangular matrices 

3. Check if assignments are in the validation gate and, if yes, update 

• Performs data associations jointly, finds global optimum



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabTracking and Data Association

Global Nearest Neighbor Standard Filter (GNN) 

Linear assignment problem 

• The linear assignment problem is a standard problem in linear 
programming and combinatorial optimization 

• Used to find, for example, the best assignment of n differently  
qualified workers to n jobs 

• Also called “the personnel assignment problem”, first solutions in 
the 1940s 

• By today, many efficient solution methods exist. The Hungarian  
method – while not the most efficient one – is still popular 

• The problem can also be solved for non-square matrices by  
Munkres' algorithm
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Global Nearest Neighbor Standard Filter (GNN) 

Linear assignment problem 

• Problem statement: We are given an n x n  
cost matrix C = [cij], and we want to select 
n elements of C, so that there is exactly one 
element in each row and one in each column 

and the sum of the corresponding costs 

is a minimum 

• Example: assigning students to class projects projects

st
ud

en
ts

assignment

st
ud

en
ts

preferences 
(darker is higher)

projects
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Global Nearest Neighbor Standard Filter (GNN) 

• NNSF versus GNN example

Observations State predictions

What is the globally  
best assignment?
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Global Nearest Neighbor Standard Filter (GNN) 

• NNSF versus GNN example

Observations State predictions

NNSF: 
greedy



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabTracking and Data Association

Global Nearest Neighbor Standard Filter (GNN) 

• NNSF versus GNN example

Observations State predictions

Gaiting will reject  
this assignment
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Global Nearest Neighbor Standard Filter (GNN) 

• NNSF versus GNN example

Observations State predictions

Global NNSF: 
Jointly optimal
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Joint Probabilistic Data Association Filter (JPDAF) 

• Despite its joint optimization, the GNN makes hard decisions. Its 
performance is likely to degrade under more challenging conditions 

• Looking for a way to make soft decisions, the joint probabilistic data 
association filter (JPDAF) is a natural multi-target extension of the PDAF 

• The difference between PDAF and JPDAF lies in the definition of the 
association events and their probability: the JPDAF considers joint 
association events 

• It has the same state update expressions as the PDAF:  
Given probabilities of joint association events as weights, the JPDAF 
updates the track states with the combined innovation over all validated 
measurements and the track covariances with the spread of innovations 
term that accounts for the measurement origin uncertainty
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Joint Probabilistic Data Association Filter (JPDAF) 

• In this example, the PDAF would define three disjoint trees of data 
association events, one for each track

track 1 track 2 track 3

z1

z2

z3

z4

ẑ2

ẑ1

ẑ3
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Joint Probabilistic Data Association Filter (JPDAF) 

• The JPDAF defines a single tree of joint association events

z1

z2

z3

z4

ẑ2

ẑ1

ẑ3
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Joint Probabilistic Data Association Filter (JPDAF) 

• It can be shown that the probability of a joint association event     is 

•     is the Poisson density of false alarms 

•        is the track-specific detection probability of track t 

•        is the known gate probability of track t 

•                                            is the measurement likelihood of observation jt 
given track t

    all false 
alarms in 

   all associated 
targets in 

   all non-associated 
targets in



Joint Probabilistic Data Association Filter (JPDAF) 

• The JPDAF defines a single tree of joint association events
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z1

z2

z3

z4

ẑ2

ẑ1

ẑ3

where                                           and  
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Joint Probabilistic Data Association Filter (JPDAF) 

• For the state update of track t we require the marginal association 
probability                                . This is the probability that a particular 
observation j originates from track t 

• Obtained by marginalization of the joint association probability 

• The marginal association probability        are then the weights in the 
combined innovation for state and state covariance updates 

• The JPDAF assumes the number of tracks to be known. Thus, a separate 
track initiation logic must run along to create new tracks 

• JPDAF is the soft decision equivalent of the GNN in the same way that the 
PDAF is a soft version of the NNSF 

• However, JPDAF collapses the hypothesis trees after each step



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabTracking and Data Association

Multi-Target Data Association 

• All data association methods considered so far are single-frame or 
single-scan. Decisions – hard or soft – are taken after each step 

• This is a rather myopic strategy and likely to fail in challenging 
conditions where, for example, misdetections have to be distinguished 
from occlusion events in the presence of both false alarms and target 
maneuvers 

• Thus, we want to delay decisions and accumulate information to the  
point where we can take more informed decisions (“integrating 
information over time”) 

• This implies the maintenance of multiple histories/sequences of 
hypothetical data association decisions 

• The multiple hypothesis tracking (MHT) approach implements this  
idea in a general way
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Multiple Hypothesis Tracking (MHT) 

• The MHT considers the association of sequences of observations

1
2

3
4

5

1
2

3 4

5

observation sequence

1

2
3

4

5

1
2

3 4

5

track 1

track 2

possible explanation
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2
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1
2

3 4

5false alarm

track termination

misdetection
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2
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4

5

1
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3 4

5track 2

track 1

possible explanation



Multiple Hypothesis Tracking (MHT) 

• The MHT concatenates the trees of each step to one big hypothesis tree

Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabTracking and Data Association

k–1 k k+1



Multiple Hypothesis Tracking (MHT) 

• The MHT concatenates the trees of each step to one big hypothesis tree
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k–1 k k+1
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Multiple Hypothesis Tracking (MHT) 

• The number of association histories increases exponentially and 
results in an ever-growing hypothesis tree 

• For practical implementations, pruning strategies are mandatory 

• Without pruning, the MHT approach is the optimal Bayesian data 
association solution (no simplifications or approximations) 

• In addition to the measurement-to-track associations, the MHT 
can reason about track interpretations as 
• occluded (label O) 
• deleted (label T) 

and measurement interpretations as 
• false alarms (label FA or F) 
• new tracks (label N) 

• New tracks are also modeled as spatially uniform, Poisson in the number
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Multiple Hypothesis Tracking (MHT) 

• In this way, the MHT can deal with the entire life cycle of tracks 
initialization–confirmation–occlusions–deletion in a probabilistically 
consistent way 

• No need for an additional track management logic 
(for initialization or deletion) 

• Let an association hypothesis or simply hypothesis        be a root-to-leaf 
path through the entire tree until time k 

• What is then the best hypothesis? 
• Compute probabilities of all hypotheses, obtain a discrete 

probability distribution over hypotheses 

• Search through all hypotheses and find the best one as 
the one with the highest probability



Multiple Hypothesis Tracking (MHT) 

• Let us consider the probability of a hypothesis. We define
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• Parent hypothesis p(i) 

• Association or 
assignment set 

• Child hypothesis i 

• Their relation

k–1 k k+1



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabTracking and Data Association

Multiple Hypothesis Tracking (MHT) 

• Let further                                        be the set of current observations 
and        the observation history up to time k 

• Then the probability of        at time k is

dividing up the evidence

chain rule

Bayes

conditional indep.

conditional indep.
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Multiple Hypothesis Tracking (MHT) 

• Let further                                        be the set of current observations 
and        the observation history up to time k 

• Then the probability of        at time k is

measurement 
likelihood

association 
probability

recursive 
term
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Multiple Hypothesis Tracking (MHT) 

• The measurement likelihood (derivation skipped) 

• If observation                             is in the gate of track ti 

• If observation             is a false alarm 

• If observation             is a new track 

measurement likelihood
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Multiple Hypothesis Tracking (MHT) 

• The association probability (derivation skipped) 

• Computes the prior probability of association           based on known parameters 
such as probability of detection and Poisson densities for false alarms/new tracks  

• The final expression

association probability
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Multiple Hypothesis Tracking (MHT) 

• Note the similarity of the association probability in the MHT and JPDAF. 
The differences come from the ability of the MHT to interpret observations 
also as new tracks and the recursiveness of the computation 

• The JPDAF creates only single-step trees and collapses them after each 
step by incorporating all validated observations over a combined inno-
vation approach 

• In the same situation, the MHT solves the data association ambiguity by 
splitting the track and creating offsprings    

• But unlike the track splitting filter, the different offsprings compete with 
each other in a fully Bayesian framework  

• MHT maintains a standard KF or EKF for each hypothesized track 

• MHT takes hard, multiple and delayed decisions
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Multiple Hypothesis Tracking (MHT) 

There are several pruning techniques to limit the number of hypotheses 

• Clustering spatially disjoint hypothesis trees 
• Tracks are partitioned into clusters along “uncoupled” observations 

• A separate tree is grown for each cluster 

• Merging hypotheses 
• Combine hypotheses with similar effect, typically with a common recent history 

• For example, the same number of targets but with slightly different track states 

• Eliminate low probability hypotheses 
• A variant thereof is ratio pruning that considers the probability ratio with 

the best hypothesis. Unlikely hypothesis below a ratio threshold are discarded  

• Caution! Branches that turn out to hold the true hypothesis at a later point 
may start with a very unlikely ancestor hypothesis
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Multiple Hypothesis Tracking (MHT) 

There are several pruning techniques to limit the number of hypotheses 

• K-best branching 
• Directly generate the k-best hypotheses 

• Murty's algorithm incorporates the generation and evaluation of hypotheses 
in a single algorithm with polynomial time complexity 

• Implements a generate-while-prune versus a generate-then-prune strategy 

• The most important pruning technique 

• N-scan back pruning 
• Ambiguities are assumed to be resolved after N steps 

• Ancestor hypotheses at time k–N receive probability mass of their descendants at k 

• Keep only subtree of the most probably ancestor hypothesis
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ID: 97 (0)
p: 0.62

#O: 2
T0: MAT1 (0.127)
T3: MAT0 (0.914)

ID: 98 (1)
p: 0.20

#O: 2
T0: OCC (0.46)

T3: MAT0 (0.914)
T20: NEW1 (0.04)

ID: 99 (2)
p: 0.10

#O: 2
T3: MAT0 (0.914)
T20: NEW1 (0.04)

ID: 100 (3)
p: 0.05

#O: 2
T3: MAT0 (0.914)
T20: NEW1 (0.04)

ID: 101 (4)
p: 0.03

#O: 2
T0: MAT1 (0.127)
T3: MAT0 (0.914)

ID: 102 (0)
p: 0.92

#O: 2
T0: MAT1 (3.176)
T3: MAT0 (2.193)

ID: 103 (1)
p: 0.05

#O: 2
T0: MAT1 (3.176)
T3: MAT0 (2.193)

ID: 104 (2)
p: 0.02

#O: 2
T0: MAT1 (3.176)
T3: OCC (0.46)

T21: NEW0 (0.04)

ID: 105 (3)
p: 0.01

#O: 2
T0: OCC (0.46)

T3: MAT0 (2.193)
T22: NEW1 (0.04)

ID: 106 (4)
p: 0.01

#O: 2
T3: MAT0 (2.193)
T20: MAT1 (0.117)

ID: 107 (0)
p: 0.89

#O: 1
T0: MAT0 (3.003)
T3: OCC (0.46)

ID: 108 (1)
p: 0.05

#O: 1
T0: MAT0 (3.003)
T3: OCC (0.46)

ID: 109 (2)
p: 0.04

#O: 1
T0: MAT0 (3.003)

T3: DEL (0.02)

ID: 110 (3)
p: 0.01

#O: 1
T0: OCC (0.46)
T3: OCC (0.46)

T23: NEW0 (0.04)

ID: 111 (4)
p: 0.01

#O: 1
T0: MAT0 (3.003)
T3: OCC (0.46)
T21: OCC (0.46)

ID: 112 (0)
p: 0.82

#O: 1
T0: MAT0 (4.355)
T3: OCC (0.46)

ID: 113 (1)
p: 0.09

#O: 1
T0: MAT0 (4.355)

ID: 114 (2)
p: 0.04

#O: 1
T0: MAT0 (4.355)
T3: OCC (0.46)

ID: 115 (3)
p: 0.04

#O: 1
T0: MAT0 (4.355)

T3: DEL (0.02)

ID: 116 (4)
p: 0.01

#O: 1
T0: OCC (0.46)
T3: OCC (0.46)

T24: NEW0 (0.04)

ID: 117 (0)
p: 0.69

#O: 1
T0: MAT0 (4.813)
T3: OCC (0.46)

ID: 118 (1)
p: 0.16

#O: 1
T0: MAT0 (4.813)

ID: 119 (2)
p: 0.07

#O: 1
T0: MAT0 (4.813)

ID: 120 (3)
p: 0.04

#O: 1
T0: MAT0 (4.813)
T3: OCC (0.46)

ID: 121 (4)
p: 0.03

#O: 1
T0: MAT0 (4.813)

T3: DEL (0.02)

ID: 122 (0)
p: 0.53

#O: 1
T0: MAT0 (3.894)
T3: OCC (0.46)

ID: 123 (1)
p: 0.27

#O: 1
T0: MAT0 (3.894)

ID: 124 (2)
p: 0.12

#O: 1
T0: MAT0 (3.894)

ID: 125 (3)
p: 0.06

#O: 1
T0: MAT0 (3.894)

ID: 126 (4)
p: 0.03

#O: 1
T0: MAT0 (3.894)
T3: OCC (0.46)

ID: 127 (0)
p: 0.38

#O: 1
T0: MAT0 (1.807)

ID: 128 (1)
p: 0.35

#O: 1
T0: MAT0 (1.807)
T3: OCC (0.46)

ID: 129 (2)
p: 0.18

#O: 1
T0: MAT0 (1.807)

ID: 130 (3)
p: 0.08

#O: 1
T0: MAT0 (1.807)

ID: 131 (4)
p: 0.02

#O: 1
T0: MAT0 (1.807)
T3: OCC (0.46)

ID: 132 (0)
p: 0.47

#O: 0
T0: OCC (0.46)

ID: 133 (1)
p: 0.22

#O: 0
T0: OCC (0.46)

ID: 134 (2)
p: 0.20

#O: 0
T0: OCC (0.46)
T3: OCC (0.46)

ID: 135 (3)
p: 0.10

#O: 0
T0: OCC (0.46)

ID: 136 (4)
p: 0.02

#O: 0
T0: DEL (0.02)

ID: 137 (0)
p: 0.51

#O: 0
T0: OCC (0.46)

ID: 138 (1)
p: 0.23

#O: 0
T0: OCC (0.46)

ID: 139 (2)
p: 0.11

#O: 0
T0: OCC (0.46)

ID: 140 (3)
p: 0.10

#O: 0
T0: OCC (0.46)
T3: OCC (0.46)

ID: 141 (4)
p: 0.05

#O: 0

ID: 142 (0)
p: 0.50

#O: 0
T0: OCC (0.46)

ID: 143 (1)
p: 0.23

#O: 0
T0: OCC (0.46)

ID: 144 (2)
p: 0.12

#O: 0

ID: 145 (3)
p: 0.11

#O: 0
T0: OCC (0.46)

ID: 146 (4)
p: 0.05

#O: 0
T0: OCC (0.46)
T3: OCC (0.46)

ID: 147 (0)
p: 0.45

#O: 0
T0: OCC (0.46)

ID: 148 (1)
p: 0.23

#O: 0

ID: 149 (2)
p: 0.21

#O: 0
T0: OCC (0.46)

ID: 150 (3)
p: 0.10

#O: 0
T0: OCC (0.46)

ID: 151 (4)
p: 0.02

#O: 0
T0: DEL (0.02)

ID: 152 (0)
p: 0.38

#O: 0

ID: 153 (1)
p: 0.35

#O: 0
T0: OCC (0.46)

ID: 154 (2)
p: 0.16

#O: 0
T0: OCC (0.46)

ID: 155 (3)
p: 0.07

#O: 0
T0: OCC (0.46)

ID: 156 (4)
p: 0.04

#O: 0

ID: 157 (0)
p: 0.55

#O: 0

ID: 158 (1)
p: 0.23

#O: 0
T0: OCC (0.46)

ID: 159 (2)
p: 0.11

#O: 0
T0: OCC (0.46)

ID: 160 (3)
p: 0.05

#O: 0

ID: 161 (4)
p: 0.05

#O: 0
T0: OCC (0.46)
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Multiple Hypothesis Tracking (MHT) 

• Example, showing only the 5-best hypotheses

Tracking and Data Association
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Multiple Hypothesis Tracking (MHT) 

• Example, tree detail shows backtracking

jump to a more 
probable branch
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Multiple Hypothesis Tracking (MHT) 

• Example: Tracking people in RGB-D data
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Social Robotics LabTracking and Data Association

Multiple Hypothesis Tracking (MHT) 

• Example: Tracking pedestrians in 3D point clouds
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Social Robotics LabTracking and Data Association

Multiple Hypothesis Tracking (MHT) 

• Example: Tracking pedestrian in Freiburg city center in 2D laser data 

• Difficult scenario with track identifier switches – mainly due to little 
information from sensor, frequent and long occlusion events

image data (not used for tracking)
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Social Robotics LabWhy We Teach This...

How to Escape a Rebellious Humanoid Robot? 

• Run toward the light 

• Find clutter to hide 

• Hug a comrade, then dive into random 
direction 

• Wear similar clothing 

• Don't run in a predictable line, zigzag  
erratically 

• Try to mix with the crowd 

• Wear trenchcoat or long skirt to mask your 
movements 

• Hop, skip or jump occasionally  

• Vary rhythm and length of your stride 

Ask yourself which parts of the robot’s tracking system is fooled by those actions

"How to Survive a Robot Uprising: 
Tips on Defending Yourself 

Against the Coming Rebellion," 
by Daniel H. Wilson, 

Bloomsbury 2005 
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Summary 

• Tracking is maintaining the state and identity of a moving object over 
time based on remote measurements 

• An key issue in tracking is data association: the problem of associating 
measurements to tracks under significant levels of origin uncertainty. Data 
association also deals with the interpretation of measurements and tracks 
as false alarms/new tracks, or occluded/terminated 

• The simplest form of data association (which can also be seen as a 
preprocessing step) is gaiting:  the validation gate is a region of 
acceptance such that                             of true measurements are rejected 

• False alarms (as well as new tracks) are modeled as uniform over space and 
Poisson distribution in their number per step 

• The NNSF makes greedy associations based on smallest Mahalanobis 
distances. These hard decisions are sometimes correct, sometimes wrong
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Summary 

• The PDAF makes soft decisions by integrating all validated measurements 
in the gate. Decisions are never totally correct but never totally wrong 

• For multi-target data association, the GNN makes hard but jointly optimal 
decisions by solving a linear assignment problem  

• The JPDAF is the soft version of the GNN in the way that the PDAF is a soft 
version of the NNSF 

• The JPDAF considers joint association events and computes their 
probability. State update is like in the PDAF using a combined innovation 

• The MHT, the optimal data association algorithm without pruning, 
maintains a growing tree of association hypotheses. It makes hard but 
multiple decisions and delays them until more evidence has arrived 

• Data association is a hard problem and currently an active area of research. 
A promising approach not covered here is MCMC data association.
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Sources and Further Reading 

These slides partly follow the books of Bar-Shalom et al. [1] and Blackman [6]. The JPDAF 
trees are inspired by the nice lecture notes of Orguner [3]. A brief, AI/machine learning view 
on data association is given by Russell and Norvig [2] (chapter 15.6). More on PDAF and 
JPDAF can be found in [4], in particular also application examples. A comprehensive 
treatment of particle filter-based tracking techniques is given in Ristic et al. [5]. 

[1] Y. Bar-Shalom, X. Rong Li, T. Kirubarajan, “Estimation with Applications to Tracking and      
Navigation”, Wiley, 2001 
[2] S. Russell, P. Norvig, “Artificial Intelligence: A Modern Approach”, 3rd edition, Prentice      
Hall, 2009. See http://aima.cs.berkeley.edu 
[3] U. Orguner, “Target Tracking”, Lecture notes, Linköpings University, 2010. See https://     
www.control.isy.liu.se/student/graduate/TargetTracking 
[4] Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data association filter,” IEEE      
control system magazine, 29(6), Dec. 2009. 
[5] B. Ristic, S. Arulampalam, N. Gordon, “Beyond the Kalman Filter: Particle Filters for      
Tracking Applications” Artech House, 2004 
[6] S.S. Blackman, R. Popoli, “Design and Analysis of Modern Tracking Systems”, Artech      
House, 1999

https://www.control.isy.liu.se/student/graduate/TargetTracking

