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State Space Model 

• We recall the two models for sequential data described by this graph 

1. Discrete case: if the latent variables are discrete, we obtain a hidden 
Markov model (HMM) 

2. Continuous case: If both the latent and the observed variables are 
continuous and Gaussian, we have a linear dynamical system (LDS)

x1 x2 xk−1 xk xk+1

z1 z2 zk−1 zk zk+1
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State Space Model 

• We also recall the three parameters of a state space model 

x0 x1 x2 xk−1 xk

z1 z2 zk−1 zk

Prior
Observation 

model
Transition 

model
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State Space Model 

• HMMs correspond to the state space model in which latent variables are 
discrete. However, the model describes a much broader class of probability 
distributions, all of which factorize according to the above equation 

• We will now consider Gaussian distributions, the most important 
distribution for this purpose from a practical perspective 

• In particular, we will consider the linear-Gaussian state space model 
where the latent variables     and the observations    are multivariate 
Gaussians whose means are linear functions of their parents in the graph

Multivariate Gaussians

Linear functions
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State Space Model 

• What’s so special about the linear-Gaussian assumption?  

1) Gaussian stays Gaussian under 
linear transformations 
(proven later in this course)

b)a)

2) Given a Gaussian joint distribution, 
all derived marginal distributions 
are Gaussian as well
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State Space Model 

• What’s so special about the linear-Gaussian assumption?  

3) Given a Gaussian joint distribution, all  
derived conditional distributions are 
Gaussian as well

4) The product of two Gaussian 
distributions is also a Gaussian 
distribution

a)
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Linear Dynamical Systems 

• These properties ensure that 
• we can always deal with Gaussian distributions  

• “the linear-Gaussian family remains closed” 

• Inference processes do not become more complex along  
the chain with more incoming observations 

• A temporal model under the linear-Gaussian assumption is called 
linear dynamical system (LDS) 

• Let us first consider the representation of a linear dynamical system
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LDS Representation 

• The transition model of an LDS is 

which implies the following linear model that describes how the world 
or system evolves (also called plant or process model) 

• Matrix                         is the state transition matrix 

• Vector                       is the zero-mean Gaussian process noise with 

• Matrix                         is the process noise covariance

i.e.
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LDS Representation 

• The observation model of an LDS is 

which implies the following linear relationship between states and 
observations through which the system can be observed remotely 

• Matrix                          is the observation matrix (note its dimension) 

• Vector                       is the zero-mean Gaussian observation noise with 

• Matrix                         is the observation noise covariance

i.e.
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LDS Representation 

• The prior distribution for time index 0 is also Gaussian 

with parameters                  

• So far, we have used time-varying matrices and noise sources 
                             . For notation simplicity, we will assume the models to be 
time-invariant and the noise variables to be stationary, i.e.  

• Finally, an important assumption of LDS is that all noise variables are 
mutually uncorrelated



LDS Representation 

• In general, LDS can have an external control input 

• Allows to describe a flexible class of dynamical systems that both evolve 
on their own and are controlled by an external influence 

• The corresponding graphical model 
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x 0 x 1 x 2 x k−1 x k

z1 z2 zk−1 zk

u1 u2 uk−1 uk



LDS Representation 

• The transition model with control input  

postulates a linear relationship between states and controls 

• Vector                       is the control input 

• Matrix                          is the input gain matrix
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• The system can be observed by 

•                    :  observation vector 

•                     :  observation noise 

•                         :  observation matrix 

•                        :  observation noise cov.
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LDS Representation Summary 

• The system is governed by 

•                     :  state vector 

•                     :  control input 

•                     :  process noise 

•                        :  transition matrix 

•                         :  input gain matrix 

•                          :  process noise cov.
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LDS Example: Throwing a Ball 

• We want to throw a ball and compute its 
trajectory. This can be easily done with an LDS 

• The LDS describes the physics of the process. 
No uncertainties/covariances, no tracking 

• The ball‘s state is represented as 

• We have the gravity force g as external influence 

• We assume windless conditions and ignore floor constraints 

• We observe the ball with a noise-free position sensor
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LDS Example: Throwing a Ball 

• The physics of the process  

• This can be written in matrix form as
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LDS Example: Throwing a Ball 

• The physics of the process  

• This can be written in matrix form as
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LDS Example: Throwing a Ball 

• Throwing a ball from                            with initial velocity 

• Initial state: 

• Input vector (scalar): 

• Observation: 

• Fixed time step:  

• Process matrices • Observation matrix
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LDS Example: Throwing a Ball 

• Initial state 

• Time step 

• No observations

System evolution
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LDS Example: Throwing a Ball 

• Initial state 

• Time step 

• No observations

System evolution
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LDS Example: Throwing a Ball 

• Observations 
with noise-free 
sensor

System evolution Observations



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabLinear Dynamical Systems

LDS Example: Throwing a Ball 

• Observations 
with noisy 
sensor

System evolution Observations
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LDS Example: Throwing a Ball 

• Observations 
with noisy 
sensor 

• It’s windy! 
System dynamics  
with noise

System evolution Observations
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LDS Example: Throwing a Ball 

• Visualizing different observation  
noise matrices 

• Remember, R is a covariance matrix, 
it’s symmetric and positive semi-definite
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Inference 

• The four inference tasks for Hidden Markov Models (HMM): 
• Filtering 
• Smoothing 
• Prediction 
• Most likely sequence 

• Do the same tasks exist for linear dynamical systems? Yes! 

• Easiest task: most likely sequence. It turns out that due to the linear-
Gaussian assumption, the most likely sequence, solved by the Viterbi 
algorithm for HMMs, is equal to the sequence of individually most 
probable latent variable values (statement without proof )  

• Next, let us consider filtering
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Inference: Filtering 

• For HMMs we have derived the recursive Bayes filter, a general  
sequential state estimation scheme 

• This finding holds for linear dynamical systems, too. In the continuous 
case, the sum becomes an integral 

• Since HMM and LDS rely on the same general state space model we 
can expect strong similarities in their inference algorithms

update one-step prediction



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabLinear Dynamical Systems

Inference: Filtering 

• If we substitute the Gaussian transition and observation models 
 
 
 
 
into the Bayes filter equation 
 
 
 
 
evaluate the integral, use some key results from linear algebra, 
marginalize some Gaussian terms, and perform a couple of more 
transformations, then we obtain the following important result:
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Kalman Filter 

• The Kalman filter equations  
 
 
 
 
where 
 

and Kk is defined to be the Kalman gain matrix 

• Let us first try to interpret this result. There is an update equation for the 
mean and an update equation for the associated covariance
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Kalman Filter 

• We can view the update equation for the mean as follows 
 
 
 
 

• Let us introduce the commonly used notation for time indices (k|k), 
(k+1|k), and (k+1|k+1). It will help us to better structure the equations

state prediction

error between predicted and actual observation

observation prediction

prediction + scaled observation error
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Kalman Filter 

• We define  

•  to be the state and state covariance at time k                               
given all observations until k (the cycle’s “prior”) 

•   to be the state and state covariance                                               
at time k+1 given all observations until k (the “prediction”) 

•    to be the state and state covariance                                                              
at time k+1 given all observations until k+1 (the cycle’s “posterior”) 

• Let us restructure the equations to make the filter’s prediction-update 
scheme more explicit and distinguish between state prediction, 
measurement/observation prediction, and update
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Kalman Filter 

• State prediction 

• Measurement prediction 

• Update 

observation model

transition model

innovation

innovation covariance

Kalman gain
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Kalman Filter 

• We have some understanding of the update equations of the means: 
a one-step state prediction using the transition model, a measurement 
prediction using the observation model and an update that adds a scaled 
observation error to the state prediction 

• Can we also gain some insight into the covariance update expressions?  

• We recognize the recurring pattern  A・B・AT , for example in 

• This is the error propagation law. It computes the output covariance  
when an uncertain input is transformed by some (non-) linear function
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Kalman Filter 

• Error propagation (a.k.a. propagation of uncertainty) is the problem of 
finding the distribution of a function of random variables 

• It considers how the uncertainty, associated to a variable     for example, 
“propagates” through a system or function 
                      

• Often we have a computational model of the system (the output as a 
function of the input and the system parameters) and we know 
something about the distribution of the input variables 

• Several methods exist to determine the distribution of the output. Most 
popular: first-order approximations, Monte Carlo, unscented transform

System
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Kalman Filter 

• Here, we consider linear functions and Gaussian random variables 

• Then, error propagation has a closed form and is exact 

• Let                                   be the input variable with input covariance        , 
                                 the output variable with output covariance        and 
                           the linear transform 

• Then, the problem is to find

Linear System 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Kalman Filter 

• Mean

Rules for E[x] and Var[x]

if x,y are indep.
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Kalman Filter 

• Mean   

• Covariance

Rules for E[x] and Var[x]

if x,y are indep.
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Kalman Filter 

• Summarizing: transforming a Gaussian random variable by a linear 
function results again in a Gaussian random variable 

• Its parameters are 

• The relationship for the output covariance matrix 

is often called error propagation law 

• Let us return to the Kalman filter and apply our finding
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Kalman Filter 

• State prediction 

• Measurement prediction 

• Update 

transition model

innovation

innovation covariance

Kalman gain

obs. model
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Kalman Filter 

• State prediction 

• Measurement prediction 

• Update 

transition model

innovation

innovation covariance

Kalman gain

Propagation of the uncertainty of the previous state through the transition model

Propagation of the uncertainty of the predicted state through the observation model
obs. model
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Kalman Filter 

• We have derived the Kalman filter starting from probabilistic graphical 
models, Markov chains, and the state space model as a generic temporal 
model with latent variables. We have then considered HMMs for discrete 
and LDS for continuous latent variables. They share the same inference 
tasks of filtering, smoothing, prediction and most likely sequence 

• Filtering in LDS has lead us to the Kalman filter as the linear-Gaussian 
version of the recursive Bayes filter 

• This is a very modern, unifying view onto the Kalman filter. The filter has 
been developed in the late 1950s, long before graphical models had been 
discovered. HMMs have also been developed independently in the 1960s 

• The Kalman filter has countless applications and is of significant practical 
importance: optimal tracking of rockets and satellites (was/is used in the 
Apollo program and the ISS), autopilots in aircrafts, weather forecasting, 
tracking for air traffic control, visual surveillance, etc.
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Kalman Filter Cycle

State Prediction Update

System 
model

Data 
Association

Sensors

Sensors Detection

Measurement 
Prediction
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Kalman Filter Cycle

State Prediction Update

System 
model

Data 
Association

Sensors

Sensors Detection

Measurement 
Prediction

transition model

observation model



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabLinear Dynamical Systems

Kalman Filter Cycle

State Prediction Update

System 
model

Data 
Association

Sensors

Sensors Detection

Measurement 
Prediction

transition model

observation model

controls

predicted 
state

e.g. IMU, 
odometry
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Kalman Filter Cycle

State Prediction Update

System 
model

Data 
Association

Sensors

Sensors Detection

Measurement 
Prediction

transition model

observation model

controls

predicted 
state

predicted 
measurements

e.g. IMU, 
odometry
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Kalman Filter Cycle

State Prediction Update

System 
model

Data 
Association

Sensors

Sensors Detection

Measurement 
Prediction

transition model

observation model

controls

predicted 
state

predicted 
measurements

raw data

observations

e.g. IMU, 
odometry

e.g. vision, 
laser, RGB-D



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabLinear Dynamical Systems

Kalman Filter Cycle

State Prediction Update

System 
model

Data 
Association

Sensors

Sensors Detection

Measurement 
Prediction

transition model

observation model

controls

predicted 
state

predicted 
measurements

raw data

innovations from 
matched observations

observations

e.g. IMU, 
odometry

e.g. vision, 
laser, RGB-D
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Kalman Filter Cycle

State Prediction Update

System 
model

Data 
Association

Sensors

Sensors Detection

Measurement 
Prediction

transition model

observation model

controls

predicted 
state

predicted 
measurements

raw data

posterior 
state

innovations from 
matched observations

observations

e.g. IMU, 
odometry

e.g. vision, 
laser, RGB-D
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Kalman Filter Cycle (1/4): State Prediction 

• State prediction is a one-step prediction of 
the state and its associated state covariance 

• Without controls 

• With controls  

• State prediction projects the system’s state into the future without new 
observations 

• The error term                             in the transition model injects new 
uncertainty every time. Thus, the state prediction’s uncertainty grows



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabLinear Dynamical Systems

Kalman Filter Cycle (1/4): State Prediction 

• General k-step prediction corresponds to the LDS inference task of 
prediction 

• The growth of prediction’s uncertainty continues without bounds. Over 
time, the state prediction “blurs” towards a uniform distribution 
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Kalman Filter Cycle (2/4): Measurement Prediction 

• Measurement prediction uses the predicted state to compute a predicted 
measurement     which hypothesizes where to expect the next observation 

• Often, this is simply a coordinate frame transform. States are typically 
represented in some global (world) coordinates whereas observations are 
represented in local sensor coordinates 

• The innovation     (pronounced n(y)o͞o like “new”) is the error between 
predicted and actual observation. It has the same dimension than the 
observations 

• The innovation covariance matrix S is its associated uncertainty
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Kalman Filter Cycle (3/4): Data Association 

• If there is a single object state to estimate and every observation is an 
observation of that object, then there is no data association problem 

• Suppose there are several states to estimate or the observations are 
subject to origin uncertainty (e.g. sensor may produce false negatives, false 
positives, or measurements of unknown object identity). Then there is 
uncertainty about which object generated which observation 

• This problem is called data association and consists in finding the correct 
assignments of predicted to actual observations 

• Only correctly assigned prediction-observation pairs produce meaningful 
innovations and, in turn, accurate posterior state estimates. Incorrect 
associations may cause the filter to diverge and loose track 

• An assignment of a prediction to an observation is called pairing
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Kalman Filter Cycle (3/4): Data Association 

• How can we know when the pairing of prediction i and observation j is 
correct? By a statistical compatibility test: 

• Given               , the innovation and innovation covariance of pairing ij, 
we compute the Mahalanobis distance (skipping time indices) 

and compare it against a threshold from a cumulative      distribution 

• If the test 

holds, then statistical compatibility of the pairing on the significance  
level     is given (    is usually 0.95 or 0.99)

significance level

degrees of freedom
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Kalman Filter Cycle (4/4): Update 

• In the update step, the Kalman gain 
 
 
 
and the posterior state estimates are computed   

• The Kalman filter averages the prediction of the system's state with a new 
observation using a weighted average 

• More weights is put onto variables with better (i.e. smaller) estimated 
uncertainty. Such estimates are “trusted” more 
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Kalman Filter Cycle (4/4): Update 

• It is common to discuss the filter's behavior in terms of gain   

• With a high gain, the filter places more weight on the measurements, 
and thus follows them more closely 
• The innovation covariance S is small (e.g. observations are certain) and/or the 

predicted state covariance P(k+1|k) is large (e.g. due to a poor transition model) 

• With a low gain, the filter follows the state predictions (process model) 
more closely, smoothing out noise but decreasing the responsiveness 
• The predicted state covariance P(k+1|k) is small (e.g. due to an accurate transition 

model) and/or the innovation covariance S is large (e.g. observations are uncertain) 

• At the extremes, a gain of one causes the filter to ignore the state 
prediction, while a gain of zero causes the observations to be ignored
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Kalman Filter Cycle

State Prediction Update

System 
model

Data 
Association

Sensors

Sensors Detection

Measurement 
Prediction

transition model

observation model

controls

predicted 
state

predicted 
measurements

raw data

posterior 
state

innovations from 
matched observations

observations

e.g. IMU, 
odometry

e.g. vision, 
laser, RGB-D
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Kalman Filter Cycle 

• A one-dimensional example 

• For simplicity, we ignore 
measurement prediction 
by assuming a trivial obser-  
vation model H =               (e.g. 
(when state and observations 
are in same coordinate frame) 

0 2 4 6
0

0.5

1

state prediction
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Kalman Filter Cycle 

• A one-dimensional example 

• For simplicity, we ignore 
measurement prediction 
by assuming a trivial obser-  
vation model H =               (e.g. 
(when state and observations 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Kalman Filter Cycle 

• A one-dimensional example 

• For simplicity, we ignore 
measurement prediction 
by assuming a trivial obser-  
vation model H =               (e.g. 
(when state and observations 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Kalman Filter Cycle 

• A one-dimensional example 

• For simplicity, we ignore 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by assuming a trivial obser-  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Kalman Filter Cycle 

• A one-dimensional example 
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Kalman Filter Cycle 

• A one-dimensional example 

• For simplicity, we ignore 
measurement prediction 
by assuming a trivial obser-  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• A one-dimensional example
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0 2 4 6
0

0.5

1

0 2 4 6
0

0.5

1

Large process noise, small observation 
noise. Leads to high Kalman gain  
and an update that follows  
the observations 
more closely

Small process noise, large observation 
noise. Leads to low Kalman gain 

and an update that follows  
the state prediction 

more closely



Kalman Filter Cycle 

• A one-dimensional example
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0 2 4 6
0

0.5

1

0 2 4 6
0

0.5

1

Large process noise, small observation 
noise. Leads to high Kalman gain  
and an update that follows  
the observations 
more closely

Small process noise, large observation 
noise. Leads to low Kalman gain 

and an update that follows  
the state prediction 

more closely

It’s a weighted average!
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Kalman Filter Example 

• Let us return to our ball example  

• This time we want to track the ball where 
“tracking” means estimating the ball’s  
position and velocity in an online 
fashion  

• Note that, before, we have used the example 
to demonstrate the LDS representation, 
that is, the ability of the LDS model to describe the evolution of a 
dynamical system observed through an uncertain observation model.  
We have relied on physics to model the process and added noise in both, 
the system dynamics and the observations 

• Now, when we want to track the ball, the only available knowledge  
about the ball are noisy            -observations that arrive one at a time
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Kalman Filter Example 

• Suppose we also have some knowledge about 
the physics of throwing objects into the air 
and sensing them with a sensor 

• This knowledge gives us parameters F, G, H 

• But suppose further that we do not know  
anything about the thrower, the thrown  
object (ball, paper airplane, model aircraft),  
or the environmental conditions (wind, rain) 

• This is a typical situation in Kalman filtering: the transition and observation 
models are only known to some degree of accuracy. Then, the process and 
observation noise covariances Q and R have to cater for both, the inherent 
uncertainty of the system dynamics and observation process (e.g. due to 
unforeseen disturbances or sensor noise) and the lack of accurate model 
knowledge (a.k.a. mismodeling effects)
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Kalman Filter Example 

• In a first approach we choose a very generic 
process model without input (we do not  
know anything about the thrown object) 

• We choose Q, R, and prior covariance P0 conservatively (i.e. large) 

• Also, we do not perform a statistical compatibility test and accept all 
sensor readings as originating from the thrown object (no false positives)
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Kalman Filter Example 

Ground truth Observations State estimates State predictions
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Kalman Filter Example 

• Now we learn that the sensor produces 
false alarms (false positives) 

• Thus, we cannot trust all observations to 
originate from the thrown object 

• We have to make a statistical compatibility 
test. We choose a significance level of 0.99 

with  

• All other parameters remain unchanged
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recursively 
predicted 
without 
update
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Kalman Filter Example 

• Now we learn that the thrown object is a ball 
– not a paper airplane or motorized model  
aircraft. We refine our process model by 
adding the gravity force as input 

• The new transition model 

• We also employ a specific ball detector with low false alarm rate. 
Anyway, we still perform the compatibility test 

• All other parameters remain unchanged
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Ground truth Observations State estimates State predictions
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Kalman Filter Example 
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• Good state 
predictions 

• Good velocity 
estimates 

• Good tracking 
accuracy
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Kalman Filter Example 

Why “Filtering”? 

• The Kalman filter  
reduces the noise 
of the observations 

• Hence the name 
filtering 

• Rooted in early 
works in signal 
processing 
where the goal 
is to filter out 
the noise in a  
signal 
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Ground truth Observations State estimates
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Kalman Filter 

• Under the linear-Gaussian assumptions, the Kalman filter is the optimal 
solution to the recursive Bayes filtering problem. No algorithm can do 
better than the Kalman filter under these conditions 

• Concretely, the Kalman filter is the optimal minimum mean squared 
error (MMSE) estimator 

• If we define the estimation error to be 

then, “optimal” means that the algorithm processes observations in a way 
that the state estimates minimize the minimum squared error (MSE) 

the ground truth
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Extended Kalman Filter 

• But what if the (very strong) linear Gaussian assumption is not met? 
What if the process model or the observation models are nonlinear? 

• This brings us to the Extended Kalman filter (EKF) that can deal with 
nonlinear process and nonlinear observation models 

• While our regular LDS model was 

the EKF makes no linearity assumptions about the those models
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Extended Kalman Filter 

• Again, for notation simplicity, we make the assumption of time- 
invariant models (extension is straightforward) 

• All other variables (e.g. initial states) and assumptions (e.g. mutually 
independent noise terms) are the same than in the Kalman filter 

• The main consequence of this extension concerns the way how the 
uncertainties of states and observations are propagated through the 
new nonlinear models  

• So let us return to the problem of error propagation, now for  
nonlinear functions



Error Propagation 

• We have seen that transferring  
a Gaussian random variable 
across a linear function 
results again in a Gaussian  
with parameters 

• The relationship for the output  
covariance matrix 

is called error propagation law
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input distribution

output 
distribution



samples drawn from 
input distribution

transferred samples 
and resulting 

output distribution

Error Propagation 

• A different approach to the 
propagation of uncertainty is 
Monte Carlo error propagation 

• Relies on a non-parametric  
sample-based representation 
of uncertainty 

• Error propagation is done by  
simply transferring each sample 

• Here, we can draw samples from 
the input distribution and propagate,  
histogram and normalize them at 
the output 

• This gives the output distribution
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Error Propagation 

• Monte Carlo error propagation 
is great to show what happens 
when the function is nonlinear 

• The output distribution is 
not a Gaussian anymore!  

• Monte Carlo error propagation 
has the advantage of being 
general but is computationally 
expensive particularly in 
high dimensions 

• Many samples are needed to  
achieve good accuracy
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not a Gaussian!



Error Propagation 

• If Gaussian distributions are  
required – which is the case  
in Kalman filtering – we can 
fit the parameters                    
of a normal distribution to  
the N propagated samples 

• With        being a sample 

• This is the best maximum likelihood  
estimate of the Gaussian output distribution 
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fitted Gaussian 

sample mean 
and covariance



Error Propagation 

• Because Monte Carlo methods  
may be costly, we consider  
the following approach: 
we represent the nonlinear 
function                    

by a Taylor series expansion 

• Then, we truncate the series after the first-order 
term. This corresponds to a linearization of f 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Error Propagation 

• This approach is called  
first-order error propagation 

• Second (or higher) order error  
propagation is rarely used  
because the higher order  
terms are typically complex 
to derive (e.g. Hessian) 

• We linearize always around  
the most probable value, i.e. 
the mean  

Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabLinear Dynamical Systems



Error Propagation 

• For one dimension we have 

• Looking for the parameters  
of the output distribution  
              we find immediately
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Nonlinear System 
 

from

 

3

 

2.1 A First Expectation

 

Look at figure 2 where the simple case with one input and one output is illustrated. Suppose
that X is normally distributed with mean  and standard deviation 

 

†

 

. Now we would like

to know how the 68% probability interval  is propagated through the ‘sys-
tem’ .

First of all, from figure 2 it can be seen that if the shaded interval would be mapped onto
the -axis by the original function its shape would be somewhat distorted and the resulting
distribution would be asymmetric, certainly not Gaussian anymore. When approximating

 by a first-order Taylor series expansion about the point ,

, (2)

we obtain the linear relationship shown in figure 2 and with that a normal distribution for

 

‡

 

. Now we can determine its parameters  and .

, (3)

. (4)

Finally the expectation is rised that in the remainder of this text we will again bump into
some generalized form of equation (3) and (4).

At this point, we should not forget that the output distribution, represented by  and ,
is an approximation of some unknown truth. This truth is impertinently nonlinear, non-nor-
mal and asymmetric, thus inhibiting any exact closed form analysis in most cases. We are
then supposed to ask the question:

 

†

 

Remember that the standard deviation  is by definition the distance between the most probable 
value, , and the curve’s turning points.

 

‡

 

Another useful property of the normal distribution, worth to be remembered: Gaussian stays Gaussian 
under linear transformations.

µX σX

Figure 2:  One-dimensional case of a nonlinear error propagation problem
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Error Propagation 

• How does this scale to n dimensions? 

• The “n-dimensional derivative” is known as the Jacobian matrix. The 
Jacobian is defined as the outer product of vector-valued function and 
gradient operator 

with                                                         being the gradient operator of first- 
order derivatives with respect to 
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Error Propagation 

• The Jacobian gives the orientation of the tangent plane to a vector-
valued function at a given point 

• Generalizes the gradient of a scalar function 

• Non-square matrix in general (e.g. EKF observation model Jacobian) 

• For higher-order error propagation, the Hessian is the matrix of second-
order partial derivatives of a function describing the local curvature
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Error Propagation 

• For one dimension, we found                                 . Rearranging gives 

• For n dimensions, it can be shown that the output covariance is given by  

 
where F  is the Jacobian matrix of the nonlinear function f  linearized 
around the mean of  

• Thus, we have the same expression for exact error propagation across 
linear functions and approximate error propagation through nonlinear 
functions



Error Propagation 

• How good is the 
approximation? 

• Let us visually examine  
the approximation 
accuracy of first-order 
error propagation 

• Medium-sized input  
covariance 

• True distribution is slightly  
asymmetric, medium error 
from sample mean and  
sample variance
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Error Propagation 

• How good is the 
approximation? 

• Let us visually examine  
the accuracy of the 
approximation of first- 
order error propagation 

• Large input covariance 

• True distribution is arbitrarily 
shaped, has three modes,  
large error from sample 
moments 

• Normal distribution is a poor model
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Error Propagation 

• How good is the 
approximation? 

• Let us visually examine  
the accuracy of the 
approximation of first- 
order error propagation 

• Small input covariance 

• Good correspondence of 
all distributions (true, fitted,  
first-order propagated) 

• Normal distribution is a good model
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Kalman Filter 

• State prediction 

• Measurement prediction 

• Update 

transition model

innovation

innovation covariance

Kalman gain

observation model
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Extended Kalman Filter 

• State prediction 

• Measurement prediction 

• Update 

transition model

innovation

innovation covariance

Kalman gain

Jacobian of f

observation modelJacobian of h
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Extended Kalman Filter 

• Jacobians are most often time-varying as the partial derivatives are 
functions of the state. We thus reintroduce the time index 

 
(the same for observation model and innovation covariance) 

• In case of a control input, there will be two Jacobians, one               
Jacobian with partial derivatives with respect to    ,         , and one 
                  Jacobian with partial derivatives with respect to    ,
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Unscented Transform 

• The unscented transform is an alternative technique that has  
interesting properties for error propagation through nonlinear functions 

• Main idea: rather than approximating a known function f  by 
linearization and propagating an imprecisely-known probability 
distribution, use the exact nonlinear function and apply it to an 
approximating probability distribution 

• It computes so called sigma points, cleverly chosen “samples” of the 
input distribution, that capture its mean and covariance information 

• Output distribution is then recovered from the propagated sigma points 

• Having a given mean and covariance in n dimensions, one requires only 
n+1 sigma points to fully encode the mean and covariance information 

• Can be viewed as a deterministic and minimal sampling technique
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Unscented Transform 

• More accurate 
than first-order 
error propagation 
particularly for 
highly nonlinear  
functions f 

• Works also with 
non-differentiable 
functions 

• No need to derive and implement 
the linearizing Jacobians 

• EKF with unscented transform error 
propagation is known as the Unscented 
Kalman filter (UKF)

sigma points

recovered 
output 

distribution
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Particle Filter 

• If the true distributions take 
any form, we may need to  
abandon the Gaussian model  
assumption 

• Using a sample-based repre-  
sentation of uncertainty, the  
particle filter (PF) is a realization  
of the recursive Bayes filter 
without any assumptions on 
the underlying distributions 
and system models  

• Basically an on-line density estimation 
algorithm 

• There are good tutorials on PFs
input particles 

propagated 
particles 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Kalman Filter: Discussion 

• The Kalman filter is the workhorse of linear state estimation and filtering 
• It is the optimal algorithm, easy to implement and computationally very efficient  

• The EKF is one of the most widely used filtering algorithms for nonlinear 
systems 
• Works very well as long as uncertainties remain small with respect to the degree of 

nonlinearities (when the system is “almost linear on the time scale of the updates”) 

• It may underestimate the true covariance matrix and diverge more quickly due to 
modeling or initialization errors – problems that mainly arise from its first-order 
error propagation 

• Good example: EKF robot localization. Counter-example: EKF SLAM 

• The UKF relies on the unscented transform that provides more accurate  
error propagation for nonlinear models
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Summary 

• We have considered linear dynamical systems (LDS), temporal probability 
models under the linear-Gaussian assumption with continuous state and 
observation variables 

• LDS are defined by the three parameters transition/process model, 
observation model and prior 

• The four inference tasks of HMM also exist for LDS. We have considered 
filtering, prediction and most likely sequence (smoothing has been 
skipped for time reasons – there is also a Kalman smoother) 

• Using Gaussian LDS parameters, the recursive Bayes filter becomes the 
Kalman filter, a widely applied estimation technique for linear systems 

• The Kalman filter is basically a recursive weighted average of the 
prediction and observation
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Summary 

• The extended Kalman filter (EKF) can deal with nonlinear process and 
observation models. It relies on first-order error propagation which models 
the system as locally linear in regions around the respective means 

• The EKF works well as long as nonlinearities within those local regions are 
small, i.e. as long as first-order error propagation gives Gaussian state 
distributions that are a reasonable approximation to the true posterior 

• The unscented transform, and the resulting unscented Kalman filter (UKF), 
uses a deterministic sampling strategy of the input distribution for 
improved error propagate across less well-behaved and/or highly 
nonlinear functions 

• The particle filter uses a sample-based representation of uncertainty. It is 
an instance of the recursive Bayes filter without any modeling 
assumptions on the underlying distributions and system models
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Sources and Further Reading 

These slides follow roughly the derivation of LDS and Kalman filtering by Russell and 
Norvig [1] (chapter 15) and Bishop [2] (chapter 13). A comprehensive treatment of non-
parametric filtering (histogram filter and particle filter), particularly for robotics, is given by 
Thrun et al. [3]. The tutorial by Maybeck [4] is a good start, the textbook by Bar-Shalom et 
al. [5] is a comprehensive treatment of Kalman filters.   
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