
Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics Lab

Human-Oriented Robotics

Unsupervised Learning 

Kai Arras 

Social Robotics Lab, University of Freiburg 

Winter term 2014/2015



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabUnsupervised Learning

Contents 

• Introduction 

• Hierarchical Clustering 

• K-Means 

• Gaussian Mixture Models



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabUnsupervised Learning

Introduction 

• In unsupervised learning, data vectors     have no class labels 

 supervised learning                      

• The challenge is to find hidden structures in unlabeled data 

• Approaches to unsupervised learning include clustering, outlier detection, 
density estimation, dimensionality reduction 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Introduction 

• In unsupervised learning, data vectors     have no class labels 

 supervised learning unsupervised learning                                                                  

• The challenge is to find hidden structures in unlabeled data 

• Approaches to unsupervised learning include clustering, outlier detection, 
density estimation, dimensionality reduction 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Introduction 

• Clustering is a set of techniques for organizing objects in such a way that 
objects in the same group are more similar to each other than to those in 
other groups 

• This task is called cluster analysis and groups are called clusters   

• Clustering requires the following components and steps 

1. Selection of features 

2. Similarity measure 

3. Clustering criterion 

4. Clustering algorithm  

5. Validation of the results  

• Applications: data mining, big data, web science (e.g. social network 
analysis), computational biology, computer vision (e.g. image 
segmentation), robotics (e.g. finding modes in probability distributions)
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Introduction 

• Cluster analysis components and steps: 

1. Selection of features. As was the case with supervised learning, we 
assume that data are represented in terms of attributes or features, 
which form m-dimensional vectors    . These features must be 
properly selected so as to encode as much information as possible 
concerning the task of interest. Preprocessing the features (e.g. 
scaling, whitening, PCA whitening etc.) may be necessary 

2. Similarity measure. The measure quantifies how similar or “close” 
two feature vectors are. It is assumed that all selected features 
contribute equally to the computation of the proximity measure 
and there are no features that dominate others
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Introduction 

• Cluster analysis components and steps (cont.): 

3. Clustering criterion. The organization of data into clusters depends 
on task-relevant criteria. Animals, for example, are grouped 
differently if the criterion is the existence of lungs or the 
environment they live (water, air, land). People can be grouped into 
friends, family, colleagues, members of a theatre audience or 
combinations thereof. The criterion may be expressed via a cost 
function 

4. Clustering algorithm. Based on a similarity measure and a criterion, 
the specific algorithm that unravels the hidden structures in the data 

5. Validation of the results. Like in supervised learning, the validity of 
the obtained result is verified using appropriate tests



Introduction 

• Different choices of similarity measures, 
clustering criteria or clustering algo- 
rithms may lead to totally different 
clustering results 

• Which clustering is “correct”?  To a 
certain extent, subjectivity plays a role 

• We now consider the three most popular clustering methods:  
hierarchical clustering, k-means, and Gaussian mixture models  

• Let us introduce some notation common to those methods: 
Let                                                    be a data set consisting of N observations, 
each of dimension m. Our goal is to partition the data into K clusters
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Hierarchical Clustering 

• Hierarchical clustering is a method of cluster analysis which seeks to build 
a hierarchy of clusters. Algorithms generally fall into two categories: 

• Agglomerative: a "bottom up" approach in which each  
observation starts in its own cluster, and pairs of clusters 
are merged as one moves up the hierarchy 

• Divisive: a "top down" approach in which all observations  
start in one cluster, and splits are performed recursively as 
one moves down the hierarchy 

• We will consider the agglomerative approach. Divisive methods are more 
expensive and rarely used in practice 

• Let                          be a clustering, that is, the partition of D into K non-
empty sets Ci (clusters) such that                          (exhaustive) and  
                                                           (mutually exclusive)
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Agglomerative Hierarchical Clustering (AHC) 

• Set                                                             as the initial clustering and let t = 0 

Repeat 

1. Find the closest pair of clusters 

2. Merge  

3. Produce new clustering 

4.   

Until              

• Alternative termination conditions:                                    or  



Dendrogram 

• The result of hierarchical clustering can be drawn as a hierarchical structure 
known as dendrogram 

• Leaves correspond to  
single data points 

• The grouping of points is 
given by the order they 
are merged  

• Can be intersected at any 
level to get the wanted  
number of clusters K or 
minimal similarity 

• Merge decisions are hard 
and cannot be revised
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Similarity Measures 

• In order to decide which clusters should be merged, we require both, a 
similarity (or dissimilarity/distance) metric between pairs of data points 
and a linkage criterion which specifies the similarity (or dissimilarity) of 
clusters 

• For the former, distances are typically measured with a Minkowski 
distance or     -norm 

which is, for example, the Euclidian distance for p = 2, the Manhattan 
(taxicab) distance for p = 1, the maximum or Chebyshev distance for 
the case of p reaching infinity 

• Many distance metrics exist also for discrete or non-numeric data 
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Linkage Criterion 

• The linkage criterion is a similarity measure                    between clusters 
which, in turn, relies on the similarity measure between pairs of data points 
in the clusters. Among a large variety of criteria, the most common are: 

• Single-linkage  

• Complete-linkage  

• Average-linkage 
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Properties 

• Different choices of similarity measures for both pairs of points or pairs of 
clusters may lead to totally different clustering results 

• Hierarchical clustering can use any valid distance measure: data points are 
never required on their own, they only enter the algorithm in pairwise 
distances. Thus, the methods can be readily applied to various data types 
(discrete, non-numeric, etc.) 

• In some clustering tasks, it may be more natural to define a minimal 
similarity            , in other tasks K is easy to define. Hierarchical clustering 
allows to terminate with both criteria 

• For an implementation, it is typical to maintain a distance matrix, where 
the number in the i-th row j-th column is the distance between the i-th 
and j-th data points. Then, as clustering progresses, rows and columns are 
merged as the clusters are merged and the distances updated
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Examples 

• Shows the bottom- 
up progression of  
AHC 

• Only clusters with  
                are high-  
lighted
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Examples 

• Shows the bottom- 
up progression of  
AHC 

• Termination at 
K = 15 

• Only clusters with  
                are high-  
lighted 

R15 data set [7]
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Examples 

• Single linkage (left) vs. average linkage (right), K = 7 

• Single linkage is able to recover elongated clusters but undersegments 

• Complete linkage (not shown) tends to oversegment data, cannot handle 
non-globular clusters very well
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Examples 

• Single linkage (left) vs. average linkage (right), K = 7 

• Single linkage fails quickly in the presence of noise 
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Examples 

• Single linkage (left) vs. average linkage (right), K = 20 

• Increasing the number of clusters K to “account for” noisy data points  
does not help 
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Discussion 

• Hierarchical clustering methods are easy to understand and simple 

• However, they are not very robust towards outliers or noise as such points 
will either show up as additional clusters or cause other clusters to merge 
(chaining phenomenon), in particular with single-linkage criterion 

• Can never undo what was done previously 

• Assignments from points to clusters are hard 

• They are slow. Time complexity of O(N3) from scanning a N x N distance 
matrix for the largest similarity in each of N–1 iterations. Smarter imple-
mentations reach O(N2 logN) but this is still too high for large N 

• This brings us to consider a more efficient and very popular clustering 
method: k-means
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Prototypes 

• K-means clustering aims to partition the 
data set D into clusters in which each 
point belongs to the cluster with the 
nearest mean, serving as a prototype  
or centroid       of the cluster  

• The goal of k-means is then to find an 
assignment of data points to clusters, as 
well as to find the set of vectors                  , 
such that the sum of the squares of the  
distances of each data point to its closest 
vector is minimal 

• Let                          be a binary indicator variable for each data point 
describing which of the K clusters the data point        is assigned to. If 
point        is assigned to cluster k then                  otherwise  



Objective Function 

• We can then define an objective function (sometimes called distortion 
measure) given by 

which represents the sum of the squared distances of each data point to 
its assigned prototype       . Our goal is find values of all         and        so as 
to minimize J 

• How can we minimize J ? Let us consider the variables of interest 
separately and how they can minimize the objective function 

• Because J  is a linear function of         , this optimization can be done 
in closed form and for each summand independently. We see that we 
should simply choose         to be 1 for whichever n and k the distance 
                        is minimal
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Objective Function 

• J  is quadratic in       . Thus, J  is minimized by setting its derivative w.r.t.      
to zero giving 

which we can solve for       to give 

The denominator is equal to the number of points assigned to cluster k, 
and so this expression computes the mean of all data points in cluster k 

• The k-means algorithm (in the variant of Lloyd) uses a two-step 
iterative refinement technique to minimize J, alternating between an 
optimization step w.r.t.         and an optimization step w.r.t.   
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Algorithm 

• Given an initial set                  , k-means alternates between two steps 

1. Assignment step: minimize J  w.r.t. the         keeping the       fixed 

2. Update step: minimize J  w.r.t. the       keeping the         fixed 

• Because each phase reduces the value of the objective function J, 
convergence is assured. However, it may converge to a local rather than a 
global minimum
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Algorithm 

• The two phases of re-assigning data points to clusters and re-computing 
the cluster means are repeated until there is no further change in the 
assignments or until some maximum number of iterations is exceeded  

• There are KN possible clusterings 

• The algorithm due to Lloyd finds an approximate solution to the problem, 
the exact solution, that is, the optimal partitioning of the data into clusters 
under the objective function is NP-hard   

• Notice the connection between the similarity measure (e.g. Euclidian 
distance) and the update step expression for the cluster centers.  
We expect different similarity measures to lead to 
different update rules  

• Let us illustrate the algorithm using a simple data set 
in 2D with poor initial values for the cluster centers
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Examples 

• The algorithm alternates between  
re-assigning and updating, 
minimizing objective function J
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Examples 

• K = 5 

• K-means 
partitions the 
data space  
into a Voronoi 
diagram
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Movie



Examples 

• K = 6
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Aggregation data set [7]



Examples 

• K = 7 
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Aggregation data set [7]



Examples 

• K = 12 
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Aggregation data set [7]



Examples 

• K = 4 
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Aggregation data set [7]
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Initialization of the Centroids 

• The performance of k-means strongly depends and the initialization of 
the cluster centers 

• The simplest strategy is to randomly draw the initial K prototypes within 
the data range. A better strategy is to choose the initial centroids 
uniformly at random from D 

• A popular initialization technique is k-means++ 
• It chooses centers at random from D with a probability proportional to the squared 

distance from the closest already chosen center 

• While the approximation found by the regular algorithm can be arbitrarily bad with 
respect to the objective function compared to the optimal clustering, k-means++ is 
guaranteed to find a solution that is O(log K) competitive to the optimal k-means 
solution   

• Can lead to considerable improvement of k-means both in accuracy and speed
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Initialization of K 

• The performance of k-means depends heavily also on K  

• How to choose K? Most methods for automatically determining the 
number of clusters cast it into a model selection problem 

• Generally, the clustering algorithms is ran with different values of K and 
the best K is chosen based on a predefined criterion 

• Being a model selection problem, typical criteria include the minimum 
description length (MDL), the Bayes Information Criterion (BIC) or the 
Akiake Information Criterion (AIC). They all trade off data likelihood (how 
well the model explains the data) and model complexity (K in this case) 

• The X-means algorithm, another k-means extension, uses the BIC 

with M being the model and p = K(m + 1) its number of parameters
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Extensions 

• K-Medians. Instead of calculating the mean for each cluster to determine 
its centroid, the median is calculated. This corresponds to minimizing the 
error over all clusters with respect to the 1-norm distance metric 

• K-Medoids. Uses a more general similarity measures between two points 
than the Euclidian distance and chooses data points as centers (medoids). 
The latter is a consequence of the former because optimization in the 
update step is potentially more complex  

• On-line. Unlike the batch version of the algorithm, there is an on-line 
version of k-means using a sequential update rule for prototype vectors  

• Speed. A naive implementation can be slow because each assignment 
computes the Euclidean distance between every prototype and every data 
point. Extensions to speed up k-means use, for example, tree data 
structures (e.g. kd-trees) that accelerate access to nearby points
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Extensions 

• K-means is sensitive to outliers and noise because such points are 
necessarily assigned to one of the clusters and influence the respective 
means. Based on the assumption that small clusters are likely formed by 
outliers, a simple approach is have a size filter discard such clusters 

• K-means works with continuous valued features. Variants that can deal  
with discrete (categorial/nominal) data have been proposed, too 

• K-means can only separate clusters that are linearly separable. Kernel k-
means maps the points to a higher-dimensional feature space using a 
nonlinear function, and then partitions the points by linear separators in 
the new space 

• An alternative approach to this issue is spectral clustering
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Discussion 

• K-means is simple and converges quickly to a local optimum. It has linear 
time complexity O(I K N) where I is the number of iterations 

• However, K-means prefers clusters of approximately similar size, as it will 
always assign a data point to the nearest centroid. This often leads to 
incorrectly cut borders in between of clusters (which is not surprising, as 
the algorithm optimized cluster centers, not cluster borders) 

• K-Means is restricted to data which has the notion of a center. It is not 
well suited for elongated, convex or non-globular clusters 

• While k-means relaxes the irreversibility of decisions in hierarchical 
clustering, assignments of data points to clusters are still hard. This is a 
poor model for points near the boundary, for outliers or noisy data 

• Thus, let us consider techniques with soft assignments
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Density Estimation 

• Let us take a probabilistic view and frame the clustering problem as a 
parametric density estimation problem 

• The idea is to estimate a 
parametric probability 
distribution           over  
data     and then recover 
the clusters from 

• A parametric density estimation example: fitting a Gaussians to 
individual attributes/features in the Naive Bayes classifier 

• However, for clustering, data densities are very complex, a single 
distributions will not do the job
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Hidden Variables 

• To model complex probability densities, let us consider a flexible family of 
distributions that emerges from the introduction of hidden variables 

• Hidden variables, also known as latent 
variables, can be discrete or continuous 

• To exploit hidden variables, we  
describe the wanted density  
as the marginal of the joint 

• We then concentrate on working  
with the joint density  

• Proper choices for                 will produce 
powerful yet simple models
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Hidden Variables 

• To model complex probability densities, let us consider a flexible family of 
distributions that emerges from the introduction of hidden variables 

• Hidden variables, also known as latent 
variables, can be discrete or continuous 

• To exploit hidden variables, we  
describe the wanted density  
as the marginal of the joint 

• We then concentrate on working  
with the joint density  

• Proper choices for                 will produce 
powerful yet simple models
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Mixture Models 

• For discrete    ,                 is a mixture model, a flexible family of distributions 
for describing complex data densities via a linear combination of density 
functions 

• The model assumes that K distributions contribute to            

• The hidden variable     has values k = 1...K and denotes the respective 
mixture component.     follows a categorial distribution 

• It can be shown that this modeling can approximate arbitrarily closely any 
continuous density function for a sufficient number of components 

• It is a generative model: points     can be generated by first choosing a 
component with probability pk, and then generating a sample from it 
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Gaussian Mixture Models 

• Gaussian mixture models (GMM) have Gaussian mixture components
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Gaussian Mixture Models 

• Gaussian mixture models (GMM) have Gaussian mixture components
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Multivariate Gaussian Distribution 

• For d-dimensional random vectors, the 
multivariate Gaussian distribution is 
governed by a d-dimensional mean vector       
and a D x D covariance matrix      that must 
be symmetric and positive semi-definite 

• Probability density function 

• Notation

Parameters 
•     : mean vector 
•     : covariance matrix 

Expectation 
•   

Variance 
•  
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Multivariate Gaussian Distribution 

• For d = 2, we have the bivariate Gaussian 
distribution 

• The covariance matrix      (often C) deter-
mines the shape of the distribution (video)

Parameters 
•     : mean vector 
•     : covariance matrix 

Expectation 
•   

Variance 
•  



p1 = 1 
p2 = 1

p1 = 0.3 
p2 = 0.7
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Gaussian Mixture Models 

• Bivariate example 

• Parameters of a Gaussian mixture model are:       , the mixture coefficient 
or weight of each component,       , the mean of each component, 
and        , the covariance of each component
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Learning Gaussian Mixture Models 

• Learning a Gaussian mixture model consists in (the usual) fitting of the 
model parameters                                       to data 

• The standard approach would be to maximize the data log-likelihood 

where we have written                             to make the dependence of the 
parametric model from its parameters explicit (usual notation skips this) 

• Unfortunately, if we take derivates w.r.t.     and equate to zero, we will not 
obtain a closed-form equation system (due to the sum in the log) 

• Non-linear optimization would be very complex as we would have to 
account for many constraints on the parameters: the weights     have to 
sum up to 1 and the covariances        need to be positive definite
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Learning Gaussian Mixture Models 

• We have to look out for another approach... 

• Learning would be easy if we knew the parameters of each component: 
then, we could assign each data point to the component that maximizes 
the likelihood                                                     and derive the weights 

• It would also be easy if we knew which component generated each data 
point: we could simply select all points from a given component and fit 
the parameters of the Gaussian to those data 

• The problem is that we know neither the assignments nor the 
component parameters 

• Hence the name “hidden” variables. They are not observable in the data 
available for learning 

• This is where the expectation-maximization algorithm comes into play
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Expectation-Maximization 

• The expectation-maximization algorithm (EM) is an algorithm for 
fitting parameters     in models with hidden variables  

• The basic idea of EM (in this context) is to: 

1. Pretend that we know the parameters of the components and  
then to infer the probability that each data point belongs to 
each component 

2. Refit the components to the data using those probabilities. 
Each component is fitted to the entire data set with each point  
weighted by the probability that it belongs to that component 

• EM alternates between these two steps until convergence 

• Notice the similarity of this procedure and the k-means algorithm  
where we have an “assignment“ step followed by an “update“ step
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Expectation-Maximization 

• The first step is called expectation step, or E-step 

• In the E-step we compute the probability that a data point       belongs 
to a given mixture component 

• Doing so for all components yields the discrete distribution 
over the hidden variable which we can compute via Bayes’ rule

h = 2
h = 1

h =   1    2    3    4    5     
1 2 3 4 5
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Expectation-Maximization 

• The first step is called expectation step, or E-step 

• In the E-step we compute the probability that a data point       belongs 
to a given mixture component 

• Doing so for all components yields the discrete distribution 
over the hidden variable which we can compute via Bayes’ rule

Soft assignment
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Expectation-Maximization 

• The first step is called expectation step, or E-step 

• pk is the prior probability 
of                , and the quantity  
       the posterior probability 
once we have observed 

•        is called responsibility 
because it is the probability 
that the k-th Gaussian was 
responsible for the i-th data 
point 

Gaussian Mixture Models
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1
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Expectation-Maximization 

• The second step is called maximization step, or M-step 

• In the M-step, we update the component parameters based on the 
updated responsibilities. Concretely, we fit the component to the entire 
data set with each point weighted by         

where                                is the relative total responsibility of component k
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Expectation-Maximization 

• The second step is called maximization step, or M-step 

• Data points that are more 
associated with the k-th  
component (high probability 
       ) have more effect on 
its parameter updates 

• Dashed and solid lines 
represent fit before and  
after the update,  
respectively. Size of  
data points indicate  
responsibility
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Expectation-Maximization 

• Given initial parameters      , alternate until convergence 

1. E-step: compute responsibilities keeping                                      fixed 

2. M-step: update component parameters keeping the        fixed
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Expectation-Maximization 

• Why does EM work? EM is a general algorithm for fitting parameters     
in models with latent variables. It maximizes the data log-likelihood  

by defining a (cleverly chosen) lower bound and iteratively increasing 
this bound 

• The bound is a function of the parameters     and N probability 
distributions             over the hidden variables (here                           ) 

• The             ‘s are manipulated in the E-step and the    ‘s are manipulated 
in the M-step, both in a way that in each step the bound is guaranteed  
to be improved 

• Thus, EM is guaranteed to converge at least to a local maximum



Initialization 

• Clearly, the performance of EM depends strongly on the initialization of 
parameters                                        and number of components K 

• For    , it is common to run k-means to initialize EM: covariances can be 
initialized to the sample covariance of the clusters found by k-means, the 
mixing coefficients can be set to the fractions of cluster points 

• This makes sense because EM is typically much slower to converge and 
more expensive to compute 

• As with k-means, K can be determined by running EM with different 
values of K minimizing a proper model selection criterion (e.g. BIC) 

• K-means can be derived from EM for the case of spherical covariances 
of equal constant size ε for all components. Then, if we consider the limit  
ε ➝ 0, the responsibilities        become the hard assignments        , the 
data log-likelihood becomes the distortion measure
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Examples 

• Point colors  
indicate

Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabGaussian Mixture Models

(a)−2 0 2

−2

0

2

(b)−2 0 2

−2

0

2

(c)

L = 1

−2 0 2

−2

0

2

(d)

L = 2

−2 0 2

−2

0

2

(e)

L = 5

−2 0 2

−2

0

2

(f)

L = 20

−2 0 2

−2

0

2

So
ur

ce
 [2

]



Examples 

• K = 5 

• Randomly  
initialized 
components  
with spherical  
covariances
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Examples 

• K = 5 

• Randomly  
initialized 
components  
with spherical  
covariances
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Examples 

• K = 7 

• Randomly  
initialized 
components  
with spherical  
covariances
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Aggregation data set [7]



Examples 

• K = 10 

• Randomly  
initialized 
components  
with spherical  
covariances
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Aggregation data set [7]
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Cluster Validity 

• Once a clustering result has been obtained, how can we evaluate it?  

• This is the task of cluster validity: evaluating the results in a quantitative 
and objective fashion. There are internal, relative, and external criteria: 

1. Internal criteria assess the fit between the structure imposed by  
the clustering algorithm and the data using the data alone. E.g. 
test on low intra-cluster distances and high inter-cluster distances.  
Notice, certain criteria may favor certain types of structures 

2. Indices based on relative criteria compare multiple structures 
(generated by different algorithms, for example) and decide 
which of them is better in some sense 

3. External indices measure the performance by matching the  
clustering result to ground truth information (labels!). Uses 
performance measures from supervised learning
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Summary 

• Unsupervised learning is finding hidden structures in unlabeled data 

• Clustering, the most prominent unsupervised learning problem, is trying 
to group data in a way that intra-group distances are small and inter-
group distances are large 

• Hierarchical clustering 
• Builds a hierarchy of clusters 

• Forms clusters by connecting points based on their distance 
(“connectivity-based clustering”) 

• Does not optimize a global objective function, decisions are made local when 
merging clusters  

• Easy to understand and implement 

• Merges are final, hard assignments, not robust to noise, costly
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Summary 

• K-Means  
• Clusters are represented by centroids (“centroid-based clustering”) 

• Two-step linear complexity iterative algorithm, converges quickly to a local optimum 

• Speed and simplicity of k-means make it appealing, not its accuracy. 
Cannot deal with non-globular clusters, problem of cutting borders  

• Very sensitive to initial conditions, hard assignments, not robust to noise 

• Finding K automatically is typically framed as a model selection problem 

• Many extensions (k-means++, X-means, kernel k-means, etc.) 

• Gaussian Mixture Models  
• Probabilistic view of clustering, posed as a parametric density estimation problem 

(“distribution-based clustering”) 

• GMM use EM for learning, a two-step iterative algorithm, converges to local optimum
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Summary 

• Gaussian Mixture Models (cont.) 
• Soft assignments, some robustness to noise 

• Very sensitive to initial conditions, use k-means to initialize EM 

• K-means is a special case of EM 

• Which is the best clustering algorithm? Cannot be answered, depends 
on the task/data 

• Each clustering algorithm imposes a structure on the data either explicitly 
or implicitly. When there is a good match between that model and the 
data, good partitions are obtained 

• Since the structure of the data is not known a priori: trial and error,  
use cluster validation
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Summary 

• Current trends in clustering: very large N (millions) at high dimensions 
(thousands), cluster ensembles, semi-supervised clustering, etc. 

• “None of the available clustering algorithms can detect all these clusters” 
(A.K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition 
Letters, 31(8), 2010). Excellent article!
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Sources and Further Reading 

These slides follow and contain material from the books by Theodoridis and Koutroumbas 
[1] (chapters 11-15), Bischop [2] (chapter 9), Prince [3] (chapter 7), Alpaydin [4] (chapter 7) 
as well as the Wikipedia article on cluster analysis [5]. Regarding feature preprocessing, see 
also the recent paper by Coates et al. [6]. An excellent article to read in this context is Jain 
[8]. The on-line Java applets on k-means [9] and GMM [10] are very instructive.  

[1] S. Theodoridis, K. Koutroumbas, “Pattern Recognition”, 4th ed., Elsevier, 2009. Online:      
http://cgi.di.uoa.gr/~stpatrec/Welcome.html (Dec 2013) 

[2] C.M. Bischop, “Pattern Recognition and Machine Learning”, Springer, 2nd ed., 2007.      
See http://research.microsoft.com/en-us/um/people/cmbishop/prml 

[3] S.J.D. Prince, “Computer vision: models, learning and inference”, Cambridge University      
Press, 2012. See www.computervisionmodels.com 

[4] E. Alpaydin, “Introduction to Machine Learning”, The MIT Press, 2009. See http://     
www.cmpe.boun.edu.tr/~ethem/i2ml2e 

[5] Wikipedia, “Cluster analysis” article. Online: http://en.wikipedia.org/wiki/     
Cluster_analysis

http://cs.stanford.edu/people/karpathy/svmjs/demo/
http://www.computervisionmodels.com
http://en.wikipedia.org/wiki/Cluster_analysis
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Sources and Further Readings 

[6] A. Coates, A. Y. Ng, H. Lee, “An analysis of single-layer networks in unsupervised      
feature learning,” AISTATS 2011 

[7] Clustering datasets, Speech and Image Processing Unit, University of Eastern Finland.      
Online: http://cs.joensuu.fi/sipu/datasets/ (Dec 2013) 

[8] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition Letters, vol.      
31, no. 8, 2010 

[9] E.M. Mirkes, K-means and K-medoids Applet, University of Leicester, 2011. Online:      
http://www.math.le.ac.uk/people/ag153/homepage/KmeansKmedoids/
Kmeans_Kmedoids.html (Dec 2013) 

[10] I. Dinov, “EM for Mixture Models Applet”, online: http://www.socr.ucla.edu/   
Applets.dir/MixtureEM.html (Dec 2013)

http://cs.joensuu.fi/sipu/datasets/
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http://www.socr.ucla.edu/Applets.dir/MixtureEM.html

