
Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab

Human-Oriented Robotics

Supervised Learning

Part 3/3

Kai Arras

Social Robotics Lab, University of Freiburg

Winter term 2014/2015

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabSupervised Learning

Contents

• Introduction and basics

• Bayes Classifier

• Logistic Regression

• Support Vector Machines

• AdaBoost

• k-Nearest Neighbor

• Cross-validation

• Performance measures

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabSupervised Learning

Ensemble Learning

• So far, we have looked at learning methods in which a single hypothesis 
h for is used to make predictions

• The underlying idea of ensemble learning is to select a collection, or
ensemble, of hypotheses and combine their predictions

• Consider, for instance, an ensemble of K = 5 hypotheses and suppose that
we combine their predictions using simple majority voting. For the
ensemble to misclassify a new sample, at least 3 of 5 hypotheses have to
be wrong. This is much less likely than a mistake by a single hypothesis

• Boosting is the most widely used ensemble learning method. In boosting,
simple “rules” or base classifiers are trained in sequence in a way that the
performance of the ensemble members is improved, i.e. “boosted”

• Other ensemble methods include bagging, mixture of experts, voting

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Ensemble Learning

• AdaBoost is the most popular boosting algorithm

• It learns an accurate strong classifier by combining an ensemble of
inaccurate “rules of thumb”

• Inaccurate rule : weak classifier 
(a.k.a. weak learner, base classifier, feature)

• Accurate rule : strong classifier

• Given an ensemble of weak classifiers the combined strong
classifier is obtained by a weighted majority voting scheme

Confidence Strong classifier

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Boosting

• Boosting methods define a weight distribution over the training samples

• Each weak classifier is trained  
on weighted training data  
(blue arrows) in which the  
weights depend on the  
performance of the previous 
weak classifier (green)

• Once all classifiers have been  
learned, they are combined to  
give a strong classifier (red)

{w(1)
n } {w(2)

n } {w(M)
n }

y1(x) y2(x) yM (x)

YM (x) = sign

MX

m

↵mym(x)

!

So
ur

ce
 [4

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Boosting

• Weak classifier examples
• Decision stump: single axis-parallel partition of space

• Decision tree: hierarchical partition of space

• Multi-layer perceptron: general non-linear function approximators

• Support vector machines: maximum-margin classifier

• There is a trade-off between diversity among weak learners versus 
their accuracy
• Diversity (“negative correlation”) among weak classifiers is a necessary condition for

better ensemble performance

• Highly accurate weak learners will make very similar predictions

• Decision stumps are a popular choice

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Decision Stump

• Simple-most type of decision tree

• Linear classifier defined by an axis-parallel hyperplane with 
parameters θ and d

• Hyperplane is orthogonal to axis/dimension  
d with which it intersects orthogonally at  
threshold value θ

• Rarely useful on its own due to its simplicity

• Formally,

where is an m-dimensional training sample, d is the dimension

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab

1x

2x

θ

AdaBoost: Weak Classifier

Decision stump

•  Simple-most type of decision tree

•  Equivalent to linear classifier defined by hyperplane

•  Hyperplane is orthogonal to axis with which it intersects
in threshold θ

•  Commonly not used on its own

•  Formally,

where x is an m-dim. training sample, j is dimension

€

h(x; j,θ) =
+1 x j > θ

−1 else





Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Decision Stump

• Learning objective of decision stumps on weighted data

where I(.) is the indicator function

• The goal is to find parameters θ*, d* that 
minimize the weighted error

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab

1x

2x

θ

AdaBoost: Weak Classifier

Decision stump

•  Simple-most type of decision tree

•  Equivalent to linear classifier defined by hyperplane

•  Hyperplane is orthogonal to axis with which it intersects
in threshold θ

•  Commonly not used on its own

•  Formally,

where x is an m-dim. training sample, j is dimension

€

h(x; j,θ) =
+1 x j > θ

−1 else





Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Decision Stump

Learning algorithm for decision stumps on weighted data

• For

1. Sort samples in ascending order along dimension d

2. For

 Compute N cumulative sums

3. Threshold is at extremum of

4. Sign of extremum gives direction pd of inequality

• Global extremum in all m cumulative sums gives optimal 
threshold and dimension

Decision Stump

Learning algorithm for decision stumps on weighted data

• Label y : 
red: +1 
blue: –1

• Assume all 
weights = 1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab AdaBoost: Weak Classifier

Training algorithm for stumps: Intuition

•  Label y :
 red: +1
 blue: –1

•  Assuming all

weights = 1

1x

€

θ*, j* = 1

2x

€

wcum

j
(i) = wk yk

k=1

i

∑

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab AdaBoost: Weak Classifier

Training algorithm for stumps: Intuition

•  Label y :
 red: +1
 blue: –1

•  Assuming all

weights = 1

1x

€

θ*, j* = 1

2x

€

wcum

j
(i) = wk yk

k=1

i

∑

, = 1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Learning

Given training set , learn a strong classifier

• Initialize weights

• For

1. Learn a weak classifier on weighted 
 training data minimizing the error

2. Compute voting weight of as

3. Recompute weights

Formulae Playground: Supervised Learning

Sources

1

Notation

• Data: x

• Datum: x

• Data set: X

• World state: w

• Class: C
• Class label: c

• Number of classes: K

• Number of training samples: N

• Number of data/feature dimensions: m

• Model parameters: ✓

• Alternative model parameters: �

• Bernoulli distribution: B(.)

• Normal distribution: N (.)

Introduction

(x

1

, y

1

), (x

2

, y

2

), · · · (x

N

, y

N

)

y = f(x) x = (x

1

, x

2

, . . . , x

m

)

Classification Basics

Class-conditional densities: p(x|C
k

)

Posterior probability distributions: p(C|x)

Discriminative model describes: p(x|C)

Generative model describes: p(C|x) or p(C,x)

Logistic Regression

Activation term a = �

0

+ �

1

x

Logistic sigmoid function sig(a) =

1

1+ exp(�a)

1
Sources: • C.M. Bishop, “Pattern Recognition and Machine Learning”, Chapters 1 and 4, 2006. • S.J.D.

Prince, “Computer Vision: Models, Learning and Inference”, Chapter, 2012

1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Learning

• Voting weight of a weak  
classifier as a function of the  
error

• measures the importance 
of classifier and corres-  
ponds to the strength of its 
vote in the strong classifier

• The expression yields the  
optimal voting weight.  
Proven later.

• Notice, training samples are weighted by weight , weak classifiers
are weighted by voting weight

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0

0.5

1

1.5

2

2.5

error = 0.5

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Learning

• Let us take a closer look at the weight update step

• From

we see that weights of misclassified training samples are increased and
weights of correctly classified samples are decreased

• Normalizer Zk makes the weight distribution a probability distribution

• Thus, the learning algorithm generates weak classifier by training the next
classifier on the mistakes of the previous one

• Hence the name: AdaBoost is derived from adaptive Boosting

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Inference and Decision

• After the learning phase, predictions of new data are made by the
weighted majority voting scheme of the strong classifier

• The learned model consists in the K weak learner with 
associated voting weights

� �
i

� 0 8i

@L

@w

= 0 , w =

NX

i=1

�
i

y
i

x

i

@L

@b
= 0 ,

NX

i=1

�
i

y
i

= 0

@L

@w

= 0 , w =

NX

i=1

�
i

y
i

x

i

@L

@b
= 0 ,

NX

i=1

�
i

y
i

= 0

Derivation of dual form

w

T

=

NX

i=1

�
i

y
i

x

T

i

kwk2 = w

T

w =

NX

i=1

�
i

y
i

x

T

i

! 0

@
NX

j=1

�
j

y
j

x

j

1

A
=

NX

i,j

�
i

�
j

y
i

y
j

x

T

i

x

j

L(w, b,�) = �1

2

NX

i,j=1

�
i

�
j

y
i

y
j

x

T

i

x

j

+

NX

i=1

�
i

� b

NX

i=1

�
i

y
i

L(�) =

NX

i=1

�
i

� 1

2

NX

i,j=1

�
i

�
j

y
i

y
j

x

T

i

x

j

�
i

� 0 8i
X

i

�
i

y
i

= 0

P
i

�
i

y
i

= 0

y0
= sign(w

T

x

0
+ b)

10

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Learning: why does it work?

• The goal for the strong classifier is to minimize the training error defined
as the number of misclassified training pairs

• Using the indicator function

we can rewrite the error as

• Remember our definitions of the confidence , 
the strong classifier and labels

Learning: why does it work?

• Then, we see that implies and the error becomes

• Plotting the error for the case of a single sample 
shows that the function is non-differentiable 
and difficult to handle mathematically

• Idea: because minimizing the training error 
directly is difficult, we define an upper bound  
and minimize this bound instead

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Often called 0/1-loss function

Learning: why does it work?

• Then, we see that implies and the error becomes

• Plotting the error for the case of a single sample 
shows that the function is non-differentiable 
and difficult to handle mathematically

• Idea: because minimizing the training error 
directly is difficult, we define an upper bound  
and minimize this bound instead

• Using the exponential loss function we have 
for a single sample

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Often called 0/1-loss function

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Learning: why does it work?

• The upper bound holds for all training samples

• To proceed from here, we consider the weight update equation and
unravel it recursively from the back for k = K

From k = 0

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Learning: why does it work?

• Substitution into the error bound yields

• Minimizing the upper bounds is equivalent to minimizing the product of
the K normalizers or the Zk in each training round, respectively

• This in turn is achieved by choosing the optimal weak classifier and
finding the optimal voting weight

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Learning: why does it work?

• First, let us go for the optimal voting weight

• To minimize we partially differentiate it
w.r.t. and set the derivative to zero (skipping round index k)

• Next, we subdivide the sum into a sum over the correctly predicted
samples (for which) and a sum over the misclassified
samples (for which)

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Learning: why does it work?

• The last step uses the definition of the error for weak learners to be the
weighted sum over all misclassified training samples. We finally find

• Second, we want to find the optimal weak classifier that minimizes
Zk using this result

• We subdivide Zk into the same two sums as before, use the definition of
the error for weak learners and substitute the optimal voting weight

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Learning: why does it work?

• Doing so leads to an expression for Zk as a function of

having

• Thus, Zk is minimized by selecting with minimal weighted error

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Learning: why does it work?

• Doing so leads to an expression for Zk as a function of

having

• Thus, Zk is minimized by selecting with minimal weighted error

We want to be here

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Learning: why does it work?

• The process of selecting and can be interpreted as a single
optimization step minimizing the upper bound on the error

• The improvement of the bound is guaranteed every time the error  
 < 0.5 (in a binary classification problem). This means that weak learners
only have to be slightly better than random guessing!

• This is an amazingly light assumption for AdaBoost to work

• Hence the name “weak” classifier

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Learning

Given training set , learn a strong classifier

• Initialize weights

• For

1. Learn a weak classifier on weighted 
 training data minimizing the error

2. Compute voting weight of as

3. Recompute weights

Formulae Playground: Supervised Learning

Sources

1

Notation

• Data: x

• Datum: x

• Data set: X

• World state: w

• Class: C
• Class label: c

• Number of classes: K

• Number of training samples: N

• Number of data/feature dimensions: m

• Model parameters: ✓

• Alternative model parameters: �

• Bernoulli distribution: B(.)

• Normal distribution: N (.)

Introduction

(x

1

, y

1

), (x

2

, y

2

), · · · (x

N

, y

N

)

y = f(x) x = (x

1

, x

2

, . . . , x

m

)

Classification Basics

Class-conditional densities: p(x|C
k

)

Posterior probability distributions: p(C|x)

Discriminative model describes: p(x|C)

Generative model describes: p(C|x) or p(C,x)

Logistic Regression

Activation term a = �

0

+ �

1

x

Logistic sigmoid function sig(a) =

1

1+ exp(�a)

1
Sources: • C.M. Bishop, “Pattern Recognition and Machine Learning”, Chapters 1 and 4, 2006. • S.J.D.

Prince, “Computer Vision: Models, Learning and Inference”, Chapter, 2012

1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Training Data

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 1: train weak classifier 1

Threshold 
θ* = 0.37
Dimension 
j* = 1
Weighted error 
εk = 0.2
Voting weight 
αk = 1.39
Error = 4

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 1: recompute weights

Threshold 
θ* = 0.37
Dimension 
j* = 1
Weighted error 
εk = 0.2
Voting weight 
αk = 1.39
Error = 4

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 2: train weak classifier 2

Threshold 
θ* = 0.47
Dimension 
j* = 2
Weighted error 
εk = 0.16
Voting weight 
αk = 1.69
Error = 5

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 2: recompute weights

Threshold 
θ* = 0.47
Dimension 
j* = 2
Weighted error 
εk = 0.16
Voting weight 
αk = 1.69
Error = 5

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 3: train weak classifier 3

Threshold 
θ* = 0.14
Dimension, sign 
j* = 2, neg
Weighted error 
εk = 0.25
Voting weight 
αk = 1.11
Error = 1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 3: recompute weights

Threshold 
θ* = 0.14
Dimension, sign 
j* = 2, neg
Weighted error 
εk = 0.25
Voting weight 
αk = 1.11
Error = 1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 4: train weak classifier 4

Threshold 
θ* = 0.37
Dimension 
j* = 1
Weighted error 
εk = 0.20
Voting weight 
αk = 1.40
Error = 1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 4: recompute weights

Threshold 
θ* = 0.37
Dimension 
j* = 1
Weighted error 
εk = 0.20
Voting weight 
αk = 1.40
Error = 1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 5: train weak classifier 5

Threshold 
θ* = 0.81
Dimension 
j* = 1
Weighted error 
εk = 0.28
Voting weight 
αk = 0.96
Error = 1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 5: recompute weights

Threshold 
θ* = 0.81
Dimension 
j* = 1
Weighted error 
εk = 0.28
Voting weight 
αk = 0.96
Error = 1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 6: train weak classifier 6

Threshold 
θ* = 0.47
Dimension 
j* = 2
Weighted error 
εk = 0.29
Voting weight 
αk = 0.88
Error = 1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 6: recompute weights

Threshold 
θ* = 0.47
Dimension 
j* = 2
Weighted error 
εk = 0.29
Voting weight 
αk = 0.88
Error = 1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 7: train weak classifier 7

Threshold 
θ* = 0.14
Dimension, sign 
j* = 2, neg
Weighted error 
εk = 0.29
Voting weight 
αk = 0.88
Error = 1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 7: recompute weights

Threshold 
θ* = 0.14
Dimension, sign 
j* = 2, neg
Weighted error 
εk = 0.29
Voting weight 
αk = 0.88
Error = 1

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 8: train weak classifier 8

Threshold 
θ* = 0.93
Dimension, sign 
j* = 1, neg
Weighted error 
εk = 0.25
Voting weight 
αk = 1.12
Error = 0

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Iteration 8: recompute weights

Threshold 
θ* = 0.93
Dimension, sign 
j* = 1, neg
Weighted error 
εk = 0.25
Voting weight 
αk = 1.12
Error = 0

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Final Strong Classifier

Training error = 0

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Properties

• By increasing the weight of misclassified training pairs, it focuses on the
”hard” samples. The next weak classifier is then trained on the mistakes of
the previous one

• The weight distribution captures all information about previously learned
classifiers (a Markov property – loosely speaking)

• AdaBoost is a non-linear classifier

• AdaBoost can be seen as a principled feature selector: it tells you what
the best features are (ranked by the voting weight), what the best
thresholds are how to combine them to a classifier

• This makes the learning result interpretable and allows for knowledge
extraction which can be checked and verified by human experts

• Helps classifier design to be more science than art

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabAdaBoost

Summary AdaBoost

• Ensemble methods such as boosting are meta algorithms that improve
(“boost”) the performance of learning algorithms by combining them

• AdaBoost minimizes the training error (an upper bound thereof) if each
weak classifier performs better than random guessing (i.e. has error less
than 0.5 for a binary classification problem)

• Advantages
• AdaBoost has good generalization properties, it can be proven to 

maximize the margin (proof in literature)

• Simple to implement

• Interpretability by taking a principled approach to feature selection

• Drawbacks
• Noise-sensitive due to hard margin, can overfit under such conditions

• Not probabilistic

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabSupervised Learning

Contents

• Introduction and basics

• Bayes Classifier

• Logistic Regression

• Support Vector Machines

• AdaBoost

• k-Nearest Neighbor

• Cross-validation

• Performance measures

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Non-Parametric Classifiers

• So far, we have considered classifiers that learn parametric models  
from data:
• Bayes classifier: distributions for class-conditional densities and priors

• Logistic Regression: sigmoid mapping of linear activation function

• Support Vector Machines: hyperplane

• AdaBoost: set of parametric weak classifiers with associated voting weights

• No matter how much data are thrown at a parametric model, it will 
not require more parameters

• Learning parametric models may be costly for large training sets and 
subject to convergence issues during optimization

• So let us consider non-parametric models

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Non-Parametric Classifiers

• Non-parametric models are memory-based. They involve storing the
entire training set in order to make predictions for new data points

• They are not characterized by a bounded set of parameters but grow
with the number of training pairs

• This approach is called instance-based learning, memory-based
learning or lazy learning

• Very simple and fast to train but slow at making decisions

• The most trivial instance-based learning algorithm is table lookup: store
all training samples in a lookup table, and then when asked for , 
see if is in the table. Obviously, this method generalizes poorly

• K-nearest neighbor classification is only a slight variation of this method

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

K-Nearest Neighbor Classifier

• Given a new data point , the k-nearest neighbor classifier (k-NN) finds
the k samples that are nearest to

• For class prediction, the algorithm takes the majority vote of the
neighbors (plurality vote in the multi-class case)

• Example: three classes, k = 5 and 
three query points. Using the 
Euclidian distance we find 
varying numbers of neighbors. 
The plurality votes induce the 
decision boundaries

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 9

The kNN classifier
• Definition

– The kNN rule is a very intuitive method that classifies unlabeled examples
based on their similarity to examples in the training set

– For a given unlabeled example 𝑥௨ ∈ ℜ஽, find the 𝑘 “closest” labeled
examples in the training data set and assign 𝑥௨ to the class that appears
most frequently within the k-subset

– The kNN only requires
• An integer k

• A set of labeled examples (training data)

• A metric to measure “closeness”

– Example
• In the example here we have three

classes and the goal is to find a class label
for the unknown example 𝑥௨

• In this case we use the Euclidean distance
and a value of 𝑘 = 5 neighbors

• Of the 5 closest neighbors, 4 belong to 𝜔ଵ
and 1 belongs to 𝜔ଷ, so 𝑥௨ is assigned to 𝜔ଵ, the predominant class

xu

Z3

Z1 Z2

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Learning

• Learning consists in storing all training samples

• For large training sets, storage requirements may become very high and
there are a number of extensions that address this issue by exploiting
redundancies in the training set

• Condensing methods decrease the number of stored instances without 
degrading performance
• The Condensed nearest neighbor algorithm (CNN) removes points in the 

interior of decision regions. Since samples that define the discriminative 
function are located around the decision boundaries, such points can be 
safely discarded (“absorbed”)

• Class-outliers are easily spotted by running k-NN over the training set and 
testing if a point’s k nearest neighbors include more than r examples of 
other classes

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Inference and Decision

• Class prediction is made by a majority/plurality vote of the 
k nearest neighbors

• If k = 1 the new data point is simply assigned to the class of its (single)
nearest neighbor

• The k-NN classifier approximates the discriminant function only locally
as opposed to learning a decision boundary across the entire space

• Naive implementations iterate through all training samples and compute
all distances to a new data point. This O(N) approach may be too 
costly for large N

• Smart implementations use kd-trees or hash tables (e.g. locality-
sensitive hashing) to achieve sublinear run time

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Example

• Three classes, Euclidian distance

• For 1-NN the discriminant function lies on a Voronoi set

So
ur

ce
 [7

]

Data 1-NN

Example

• Three classes, Euclidian distance

• White areas correspond to unclassified regions where 5-NN voting is tied

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Data 5-NN

So
ur

ce
 [7

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Parameter k

• To avoid ties, k should be an odd number or a well chosen number in the
multi-class case

• If ties cannot be avoided, classes can be drawn randomly

• Small values of k may lead to overfitting in the presence of noise

• Large values of k have the advantage of smoother decision boundaries
and more precise information about the ambiguity of the decision via
the ratio of samples for each class

• However, too large values of k are detrimental: it destroys the locality of
the estimation since farther examples are taken into account

• The proper choice of k depends on the task and can be estimated using
cross-validation

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Parameter k

• 1-NN: noisy, 
overfitting

• 19-NN: poor 
local approx. 
of true discrimi-  
nant function

• 5-NN: good 
compromise

Data

5-NN 19-NN

1-NN

So
ur

ce
 [7

]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Distance Metrics

• K-NN requires a distance metric to be defined that measures the similarity
of any two vectors in feature space

• Typically, distances are measured with a Minkowski distance or -norm

• With p = 2 this is the Euclidian distance, with p = 1 we have the Manhattan
(taxicab) distance. In the limiting case of p reaching infinity, we obtain the
Chebyshev distance

• With Boolean feature vectors, the number of attributes/features on which
the two points differ is called the Hamming distance

• There is research that focusses on distance metric learning with the goal
to learn from data a function that measure how similar two objects are

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Distance Metrics

• K-NN heavily relies on the choice of the distance metric, particularly in
high-dimensional feature spaces

• Generally, the concept of distance becomes less precise as the number of
dimensions grows. In other words, in high dimensions "nearest"
becomes meaningless

• With the Euclidean distance in high dimensions, for example, all vectors
are almost equidistant to the query vector

• Strange things happen in high dimensional spaces. The related
phenomena are referred to as ”curse of dimensionality”

• Irrelevant features or noise dimensions may also affect k-NN
performance

• Other distance metrics may or may not perform better in such cases. The
best metric can be found using cross-validation

� �
i

� 0 8i

@L

@w

= 0 , w =

NX

i=1

�
i

y
i

x

i

@L

@b
= 0 ,

NX

i=1

�
i

y
i

= 0

@L

@w

= 0 , w =

NX

i=1

�
i

y
i

x

i

@L

@b
= 0 ,

NX

i=1

�
i

y
i

= 0

Derivation of dual form

w

T

=

NX

i=1

�
i

y
i

x

T

i

kwk2 = w

T

w =

NX

i=1

�
i

y
i

x

T

i

! 0

@
NX

j=1

�
j

y
j

x

j

1

A
=

NX

i,j

�
i

�
j

y
i

y
j

x

T

i

x

j

L(w, b,�) = �1

2

NX

i,j=1

�
i

�
j

y
i

y
j

x

T

i

x

j

+

NX

i=1

�
i

� b

NX

i=1

�
i

y
i

L(�) =

NX

i=1

�
i

� 1

2

NX

i,j=1

�
i

�
j

y
i

y
j

x

T

i

x

j

�
i

� 0 8i
X

i

�
i

y
i

= 0

P
i

�
i

y
i

= 0

y0
= sign(w

T

x

0
+ b)

10

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Feature Scaling

• k-NN is sensitive to improperly scaled features, particularly when used
with the Euclidian distance

• Example: the x1-feature contains all the discriminatory information. The  
x2-feature is white noise, and does not contain classification information

• Top row: both axes are scaled  
properly
• k-NN (k = 5) finds decision boundaries  

fairly close to the optimal

• Bottom row: x2-feature 
multiplied by 100
• The Gaussian distance metric is  

dominated by the large values of the 
x2-feature. k-NN performs very poorly  So

ur
ce

 [6
]

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Feature Scaling

• The general observation is that features with a particularly broad range
of values dominate any distance computation between points

• Methods that employ a distance function such as nearest neighbor
methods and SVMs are particularly sensitive to this

• Thus, k-NN, SVM as well as many other learning algorithms require that
the input features are scaled to similar ranges, typically [0, 1] or [−1, 1]

• Let x is the original value and x’ the normalized value, the simplest
method to rescale features into a [0, 1] range is

• Feature scaling (or data normalization) is a generally recommended
preprocessing step for almost all learning tasks

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabK-Nearest Neighbor

Summary K-Nearest Neighbor

• Non-parametric, instance-based classifier

• Defined by a parameter k and a distance metric

• The k-nearest neighbors rule is one of the oldest and simplest methods for
pattern recognition. Good baseline classifier in a comparison

• Trivial learning, expensive inference

• Advantages
• Very simple to implement

• Naturally multi-class

• Drawbacks
• Large storage requirements, computationally intensive inference

• Susceptible to the curse of dimensionality

• Noise-sensitive to some extent, not probabilistic

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabSupervised Learning

Contents

• Introduction and basics

• Bayes Classifier

• Logistic Regression

• Support Vector Machines

• AdaBoost

• k-Nearest Neighbor

• Cross-validation

• Performance measures

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabCross-Validation

Motivation

• Given a concrete classification task at hand, how do you find the best
classifier for the problem? And how do you choose the best values of its
“extrinsic” parameters?

• “Extrinsic” parameters, often called hyperparameters, are parameters that
are not learned from data. Examples include: SVM kernel type and kernel
parameters, neighborhood size k in k-NN or the number of rounds K in
AdaBoost

• This is where cross-validation comes into play

• Cross-validation is a model selection/validation technique for assessing
how a (learned) model will generalize to an independent data set

• Can be used for both, comparing different classifiers and comparing
different sets of hyperparameter values

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabCross-Validation

Validation Set

• Can’t we just learn several classifiers and compare their training errors?

• This does not work for two reasons: overfitting to the training data may
occur and more complex models will almost always give fewer errors than
simpler ones. Complex models may generalize poorly (and contradict the
principle of Occam’s razor)

• We therefore need a data set different from the training set. This is called
validation set

• A single run on that validation set might not be enough, in particular
when data sets are small (e.g. when data or labels are costly) or when they
contain noise and outliers that may mislead learning or validation

• Thus, we want to average over several runs and, in addition, average
over several validation sets in order to avoid overfitting on the data of a
single validation set

Training, Validation and Test Set

• How does the test set relate to training and validation sets? The test set is
split from the data set and kept apart for final evaluation. A ratio of 2/3
(training and validation) and 1/3 (test) is typical

• Let D be the entire labeled data set

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabCross-Validation

 ∙ ∙ ∙ Data set ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

Training set Validation set Test set

Training and validation set Test set

2/3 1/3

Training, Validation and Test Set

• Purposes of the different partitions

• To be able to average over several validation sets, we need to generate  
K training/validation set pairs. The sets should be as large as possible so
that error estimates are accurate, while minimizing mutual overlap

• Before any splitting is carried out, D must be randomly permuted

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabCross-Validation

Training set Validation set Test set

Used to learn 
model parameters

Used to optimize 
hyperparameters

Used for final 
evaluation

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabCross-Validation

K-Fold Cross-Validation

• In K-fold cross-validation, the data are partitioned into K folds. One of
the K folds is kept out as the validation set, the remaining K–1 form the
training set. This is repeated K times

• K is typically 5, 10 or 30. Figure shows K = 4

• As N increases, K can be smaller. If N is small, K should be large to allow
large enough training sets

Training set Validation Test set

Training set Validation Test set

Test set

 Validation Test set

 ValidationTraining set

Run 1

Run 2

Run 3

Run 4

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabCross-Validation

Leave-One-Out Cross-Validation

• One extreme case of K-fold cross-validation is leave-one-out cross-
validation

• Only one sample is left out as the validation “set” (a single instance) and
training uses N–1 samples. This will require N runs over the set pairs

• This may be costly (we have to learn the classifier N times) but advisable in
cases where labeled data are very hard to find such as medical diagnosis

Random Subsampling Cross-Validation

• Random subsampling cross-validation divides the data set into a training
and validation set by randomly drawing samples from D

• This decouples the number of runs from the number of folds but has the
drawback that some samples may never be selected for validation,
whereas others may be selected more than once

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabCross-Validation

Evaluation Procedure

• In each of the K runs we assess the predictive accuracy of model candidate
m by computing an error metric over the respective validation set

• All K validation results are then averaged to get for model m

• This procedure is repeated for all model candidates m (i.e. different
classifiers or classifiers with different hyperparameters) to find m* as the
model with the smallest averaged error

• The final evaluation on the test set quantifies the performance of the best
model m* using relevant metrics. This step is always carried out, also 
if cross-validation is skipped

• Of course, once the best classifier or best set of hyperparameters for an
application is found, we retrain the classifier on all labeled data

• Hyperparameter optimization can be computationally very expensive

Motivation

• Once a classifier is learned, we want to measure its performance. So far,
we have not been very specific on how to do that in terms of
performance measures

• While learning and validation is done on the training and validation sets,
performance is evaluated on an independent test set. This is done by
iterating over the samples in the test set and comparing the predicted
labels with the true labels

• Doing so we count four numbers in a binary classification problem: the
number of true positives (TP), false positives (FP), false negatives (FN),
and true negatives (TN)

• All measures of classification performance are based on these four
numbers

• Note that TP + FP + FN + TN = N

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabPerformance Metrics

Error Types

• The four numbers can be arranged into a 2 x 2 confusion matrix or
contingency table (s x s for s classes)

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabPerformance Metrics

True positive False positive

False negative True negative

Detected 
Not detected

T

true label

pr
ed

ic
te

d
la

be
l 

by
 c

la
ss

ifi
er

F

T
F

Error Types

• True positives (TP) and true negatives (TN) 
correspond to correct classifier predictions

• False positives (FP) are like ”wrong alarms” 
or ”hallucinations” (a.k.a. Type I errors)

• False negatives (FN) are like ”missed  
detections” (a.k.a. Type II errors)

• Different combinations of ratios have been 
given various names. All vary between 0 and 1

• Dark color is numerator, light color is denominator

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabPerformance Metrics

Truth

Cl
as

sifi
er

+

+

–

–

TP FP

TNFN

Good! Bad!

Bad! Good!

Truth

Cl
as

sifi
er

+

+

–

–

TP FP

TNFN

accuracy

Precision and Recall

• Precision is the fraction of detections  
(first row) that are truly relevant

• A conservative/”careful” classifier has high precision

• A precision score of 1.0 for a class C means that every item labeled as
belonging to class C does indeed belong to class C

• But nothing is said about the (true) number of items from class C that  
were not labeled correctly (FN)

• Precision is also known as positive predictive value (PPV)

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabPerformance Metrics

Truth

Cl
as

sifi
er

+

+

–

–

TP FP

TNFN

precision

Precision and Recall

• Recall is the fraction of truly relevant instances 
(first column) that are correctly detected

• A liberal/”loose” classifier has high recall

• A recall of 1.0 means that every item from class C was labeled as 
belonging to class C

• But nothing is said about how many other items were incorrectly also
labeled as belonging to class C.

• Recall is also known as true positive rate (TPR) or sensitivity

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabPerformance Metrics

Truth

Cl
as

sifi
er

+

+

–

–

TP FP

TNFN

recall

F-Measure

• Precision or recall alone cannot fully measure a classifier’s performance.
The insight is that three of the counts in a confusion matrix can vary
independently (the forth one follows from TP + FP + FN + TN = N)

• Hence, no single number, and no pair of numbers, can characterize
completely the performance of a classifier

• Precision and recall are typically considered jointly: either by specifying
one measure for a fixed level at the other measure (e.g. precision at recall
of 0.75), by combing them into a single measure, or by plotting PR-curves

• Popular single performance  
measures are accuracy (see above) 
and F-measure. The F-measure  
takes the harmonic mean of 
precision and recall

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabPerformance Metrics

ROC Curves

• Receiver Operating Characteristics (ROC) are often used when evaluating
binary classification problems. They offer a more complete picture of the
performance of a classifier and provide a principled mechanism to explore
operating point trade-offs

• A ROC curve shows how the number of correctly classified positive
examples (“benefits”) varies with the number of incorrectly classified
negative examples (“costs”)

• We define the false positive rate (FPR) as

• The false positive rate is also known as false 
alarm rate or fall-out

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabPerformance Metrics

Truth

Cl
as

sifi
er

+

+

–

–

TP FP

TNFN

false positive rate

ROC Curves

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabPerformance Metrics

A

B

C

tr
ue

 p
os

iti
ve

 ra
te

 (T
PR

)

false positive rate (FPR)

ROC Space

Truth

Cl
as

sifi
er

+

+

–

–

TP FP

TNFN

false positive rate (FPR)

Truth

Cl
as

sifi
er

+

+

–

–

TP FP

TNFN

recall (TPR)

ROC Curves

• ROC curves plot recall/TPR
versus FPR as the classifier
goes from “conservative”
to “liberal”

• Classifier C is close to
random guessing

• Classifier B is better 
than classifier C

• Classifier A is better 
than classifier B

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabPerformance Metrics

A

B

C

tr
ue

 p
os

iti
ve

 ra
te

 (T
PR

)

false positive rate (FPR)

ROC Space

ROC Curves

• How to generate a ROC curve? Every point on the curve is a FPR/TPR-pair
produced by the classifier at a given discrimination threshold

• Most classifiers naturally yield either a probability or a score that
represents the degree to which a sample is a member of a class
• Examples: the class probability in probabilistic classifiers, the confidence in 

AdaBoost or the y-value in SVMs

• Such classifiers then threshold this probability/score to predict the class
• Examples: The sign(.) function in AdaBoost and SVM implies a fix discrimination

threshold of 0 on the confidence or the y-value, respectively. For (binary) probabilistic
classifiers the posterior class probability ratio is thresholded at a value of 1

• Now, instead of a fix value, the discrimination threshold is varied and the
classifier is re-evaluated at every new threshold value. This method
produces the points for the ROC curve

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabPerformance Metrics

AUC and PR-Curves

• To compare classifiers we may want to reduce ROC performance to a single
performance measure. A common method is to calculate the area under
the ROC curve, abbreviated AUC

• Then, AUC(h1) > AUC(h2) means that classifier h1 has better average
performance than classifier h2

• However, ROC curves can present an overly optimistic view of an classifier’s
performance if there is a large skew/imbalance in the class distribution
(very unequal numbers of sample for the positive/negative class)

• Precision-Recall (PR) curves are an alternative to ROC curves for tasks with
imbalanced data. They can expose differences between classifiers that are
not apparent in ROC space

• PR curves plot precision versus recall and are obtained in the same way
than ROC curves

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabPerformance Metrics

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabReferences

Sources and Further Reading

The AdaBoost section contains material by Matas and Sochman [1] and Grabner [2]. Small
bits are also taken from Russell and Norvig [3] (chapter 18) and Bischop [4] (chapter 14). 
The k-NN section follows partly chapter 18.8 in [3] and contains material from the lecture
notes of Gutierrez-Osuna [5]. See also the Wikipedia article on k-NN [6]. The Java applet on
k-NN by Mirkes proved very useful to produce some of the picture [7]. The cross-validation
section is based on Alpaydin’s book [8] and the video lecture of mathematicalmonk [9]. The
performance measure section uses material from Press’ lecture notes [10|.

[1] J. Matas, J. Sochman, “AdaBoost”, Lecture Notes, Centre for Machine Perception, Czech
Technical University, Prague, 2010

[2] H. Grabner, “AdaBoost”, 2008. Online: http://www.icg.tugraz.at/courses/lv710.084/
BoostingProof.pdf/at_download/file (Dec 2013)

[3] S. Russell, P. Norvig, “Artificial Intelligence: A Modern Approach”, 3rd edition, Prentice
Hall, 2009. See http://aima.cs.berkeley.edu

[4] C.M. Bischop, “Pattern Recognition and Machine Learning”, Springer, 2nd ed., 2007.
See http://research.microsoft.com/en-us/um/people/cmbishop/prml

http://www.icg.tugraz.at/courses/lv710.084/BoostingProof.pdf/at_download/file
http://research.microsoft.com/en-us/um/people/cmbishop/prml

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics LabReferences

Sources and Further Reading

[5] R. Gutierrez-Osuna, “Pattern Recognition, Lecture 8: Nearest Neighbors”, Lecture
Notes, Texas A&M University, 2011

[6] Wikipedia, article “k-nearest neighbor algorithm”, Online: http://en.wikipedia.org/
wiki/K-nearest_neighbors_algorithm (Dec 2013)

[7] E.M. Mirkes, “KNN and Potential Energy: Applet”, University of Leicester, 2011. Online:
http://www.math.le.ac.uk/people/ag153/homepage/KNN/KNN3.html (Dec 2013)

[8] E. Alpaydin, “Introduction to Machine Learning”, The MIT Press, 2009. See http://
www.cmpe.boun.edu.tr/~ethem/i2ml2e

[9] mathematicalmonk, “(ML 12.5-12.7) Cross-validation”, mathematicalmonk YouTube
channel. Online: http://www.youtube.com/user/mathematicalmonk (Dec 2013)

[10] W.H. Press, “Unit 17: Classifier Performance: ROC, Precision-Recall, and All That”,
Lecture notes CS 395T, University of Texas at Austin, 2008

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://www.youtube.com/user/mathematicalmonk

