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Ensemble Learning 

• So far, we have looked at learning methods in which a single hypothesis 
h for                     is used to make predictions 

• The underlying idea of ensemble learning is to select a collection, or 
ensemble, of hypotheses and combine their predictions 

• Consider, for instance, an ensemble of K = 5 hypotheses and suppose that 
we combine their predictions using simple majority voting. For the 
ensemble to misclassify a new sample, at least 3 of 5 hypotheses have to 
be wrong. This is much less likely than a mistake by a single hypothesis 

• Boosting is the most widely used ensemble learning method. In boosting,  
simple “rules” or base classifiers are trained in sequence in a way that the 
performance of the ensemble members is improved, i.e. “boosted” 

• Other ensemble methods include bagging, mixture of experts, voting
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Ensemble Learning 

• AdaBoost is the most popular boosting algorithm 

• It learns an accurate strong classifier by combining an ensemble of 
inaccurate “rules of thumb” 

• Inaccurate rule          : weak classifier 
(a.k.a. weak learner, base classifier, feature) 

• Accurate rule            : strong classifier 

• Given an ensemble of weak classifiers                   the combined strong 
classifier            is obtained by a weighted majority voting scheme

Confidence Strong classifier
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Boosting 

• Boosting methods define a weight distribution over the training samples 

• Each weak classifier is trained  
on weighted training data  
(blue arrows) in which the  
weights depend on the  
performance of the previous 
weak classifier (green) 

• Once all classifiers have been  
learned, they are combined to  
give a strong classifier (red) 
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Boosting 

• Weak classifier examples 
• Decision stump: single axis-parallel partition of space 

• Decision tree: hierarchical partition of space 

• Multi-layer perceptron: general non-linear function approximators 

• Support vector machines: maximum-margin classifier 

• There is a trade-off between diversity among weak learners versus 
their accuracy 
• Diversity (“negative correlation”) among weak classifiers is a necessary condition for 

better ensemble performance 

• Highly accurate weak learners will make very similar predictions 

• Decision stumps are a popular choice



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabAdaBoost

Decision Stump 

• Simple-most type of decision tree 

• Linear classifier defined by an axis-parallel hyperplane with 
parameters θ and d 

• Hyperplane is orthogonal to axis/dimension  
d with which it intersects orthogonally at  
threshold value θ 

• Rarely useful on its own due to its simplicity 

• Formally, 

where     is an m-dimensional training sample, d is the dimension
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AdaBoost: Weak Classifier 

Decision stump 

•  Simple-most type of decision tree 

•  Equivalent to linear classifier defined by hyperplane 

•  Hyperplane is orthogonal to axis with which it intersects 
in threshold θ 

•  Commonly not used on its own 

•  Formally, 

where x is an m-dim. training sample, j is dimension 
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Decision Stump 

• Learning objective of decision stumps on weighted data 

where I(.) is the indicator function  

• The goal is to find parameters θ*, d* that 
minimize the weighted error
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AdaBoost: Weak Classifier 

Decision stump 

•  Simple-most type of decision tree 

•  Equivalent to linear classifier defined by hyperplane 

•  Hyperplane is orthogonal to axis with which it intersects 
in threshold θ 

•  Commonly not used on its own 

•  Formally, 

where x is an m-dim. training sample, j is dimension 
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Decision Stump 

Learning algorithm for decision stumps on weighted data 

• For 

1.  Sort samples       in ascending order along dimension d 

2.  For 

          Compute N cumulative sums 

3.  Threshold       is at extremum of 

4.  Sign of extremum gives direction pd of inequality 

• Global extremum in all m cumulative sums gives optimal 
threshold      and dimension 



Decision Stump 

Learning algorithm for decision stumps on weighted data 

• Label y : 
red: +1 
blue: –1 

• Assume all 
weights = 1
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Training algorithm for stumps: Intuition 

•  Label y : 
 red: +1 
 blue: –1 

 
•  Assuming all 

weights = 1 
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Training algorithm for stumps: Intuition 

•  Label y : 
 red: +1 
 blue: –1 

 
•  Assuming all 

weights = 1 
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Learning 

Given training set                                                           , learn a strong classifier 

• Initialize weights 

• For  

1.  Learn a weak classifier              on weighted 
 training data minimizing the error 

2.  Compute voting weight of               as 

3.  Recompute weights

Formulae Playground: Supervised Learning

Sources
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Notation

• Data: x

• Datum: x

• Data set: X

• World state: w

• Class: C
• Class label: c

• Number of classes: K

• Number of training samples: N

• Number of data/feature dimensions: m

• Model parameters: ✓

• Alternative model parameters: �

• Bernoulli distribution: B(.)

• Normal distribution: N (.)
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Classification Basics

Class-conditional densities: p(x|C
k

)

Posterior probability distributions: p(C|x)

Discriminative model describes: p(x|C)

Generative model describes: p(C|x) or p(C,x)

Logistic Regression

Activation term a = �
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Logistic sigmoid function sig(a) =
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1+ exp(�a)

1
Sources: • C.M. Bishop, “Pattern Recognition and Machine Learning”, Chapters 1 and 4, 2006. • S.J.D.

Prince, “Computer Vision: Models, Learning and Inference”, Chapter, 2012
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Learning 

• Voting weight       of a weak  
classifier as a function of the  
error  

•        measures the importance 
of classifier              and corres-  
ponds to the strength of its 
vote in the strong classifier 

• The expression yields the  
optimal voting weight.  
Proven later. 

• Notice, training samples are weighted by weight          , weak classifiers 
are weighted by voting weight 
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Learning 

• Let us take a closer look at the weight update step 

• From 

we see that weights of misclassified training samples are increased and 
weights of correctly classified samples are decreased 

• Normalizer Zk makes the weight distribution a probability distribution 

• Thus, the learning algorithm generates weak classifier by training the next 
classifier on the mistakes of the previous one 

• Hence the name: AdaBoost is derived from adaptive Boosting
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Inference and Decision 

• After the learning phase, predictions of new data      are made by the  
weighted majority voting scheme of the strong classifier 

• The learned model consists in the K weak learner                     with 
associated voting weights
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Learning: why does it work? 

• The goal for the strong classifier is to minimize the training error defined 
as the number of misclassified training pairs 

• Using the indicator function 

we can rewrite the error as 

• Remember our definitions of the confidence                                                , 
the strong classifier                                           and labels



Learning: why does it work? 

• Then, we see that                        implies                         and the error becomes 

• Plotting the error for the case of a single sample 
shows that the function is non-differentiable 
and difficult to handle mathematically  

• Idea: because minimizing the training error 
directly is difficult, we define an upper bound  
and minimize this bound instead
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Often called 0/1-loss function



Learning: why does it work? 

• Then, we see that                        implies                         and the error becomes 

• Plotting the error for the case of a single sample 
shows that the function is non-differentiable 
and difficult to handle mathematically  

• Idea: because minimizing the training error 
directly is difficult, we define an upper bound  
and minimize this bound instead 

• Using the exponential loss function we have 
for a single sample
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Often called 0/1-loss function
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Learning: why does it work? 

• The upper bound holds for all training samples 

• To proceed from here, we consider the weight update equation and 
unravel it recursively from the back for k = K

From k = 0



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabAdaBoost

Learning: why does it work? 

• Substitution into the error bound yields 

• Minimizing the upper bounds is equivalent to minimizing the product of 
the K normalizers or the Zk in each training round, respectively 

• This in turn is achieved by choosing the optimal weak classifier           and 
finding the optimal voting weight
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Learning: why does it work? 

• First, let us go for the optimal voting weight      

• To minimize                                                                     we partially differentiate it 
w.r.t.      and set the derivative to zero (skipping round index k) 

• Next, we subdivide the sum into a sum over the correctly predicted 
samples (for which                        ) and a sum over the misclassified 
samples (for which                            )
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Learning: why does it work? 

• The last step uses the definition of the error     for weak learners to be the 
weighted sum over all misclassified training samples. We finally find  

• Second, we want to find the optimal weak classifier            that minimizes 
Zk using this result 

• We subdivide Zk into the same two sums as before, use the definition of 
the error for weak learners and substitute the optimal voting weight 
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Learning: why does it work? 

• Doing so leads to an expression for Zk as a function of  

having  

• Thus, Zk is minimized by selecting           with minimal weighted error
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Learning: why does it work? 

• Doing so leads to an expression for Zk as a function of  

having  

• Thus, Zk is minimized by selecting           with minimal weighted error

We want to be here
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Learning: why does it work? 

• The process of selecting       and             can be interpreted as a single 
optimization step minimizing the upper bound on the error 

• The improvement of the bound is guaranteed every time the error  
      < 0.5  (in a binary classification problem). This means that weak learners 
only have to be slightly better than random guessing! 

• This is an amazingly light assumption for AdaBoost to work  

• Hence the name “weak” classifier 
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Learning 

Given training set                                                           , learn a strong classifier 

• Initialize weights 

• For  

1.  Learn a weak classifier              on weighted 
 training data minimizing the error 

2.  Compute voting weight of               as 

3.  Recompute weights
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Training Data
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Iteration 1: train weak classifier 1

Threshold 
θ* = 0.37 
Dimension 
j* = 1 
Weighted error 
εk = 0.2 
Voting weight 
αk = 1.39 
Error = 4
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Iteration 1: recompute weights

Threshold 
θ* = 0.37 
Dimension 
j* = 1 
Weighted error 
εk = 0.2 
Voting weight 
αk = 1.39 
Error = 4
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Iteration 2: train weak classifier 2

Threshold 
θ* = 0.47 
Dimension 
j* = 2 
Weighted error 
εk = 0.16 
Voting weight 
αk = 1.69 
Error = 5
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Iteration 2: recompute weights

Threshold 
θ* = 0.47 
Dimension 
j* = 2 
Weighted error 
εk = 0.16 
Voting weight 
αk = 1.69 
Error = 5
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Iteration 3: train weak classifier 3

Threshold 
θ* = 0.14 
Dimension, sign 
j* = 2, neg 
Weighted error 
εk = 0.25 
Voting weight 
αk = 1.11 
Error = 1
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Iteration 3: recompute weights

Threshold 
θ* = 0.14 
Dimension, sign 
j* = 2, neg 
Weighted error 
εk = 0.25 
Voting weight 
αk = 1.11 
Error = 1
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Iteration 4: train weak classifier 4

Threshold 
θ* = 0.37 
Dimension 
j* = 1 
Weighted error 
εk = 0.20 
Voting weight 
αk = 1.40 
Error = 1
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Iteration 4: recompute weights

Threshold 
θ* = 0.37 
Dimension 
j* = 1 
Weighted error 
εk = 0.20 
Voting weight 
αk = 1.40 
Error = 1
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Iteration 5: train weak classifier 5

Threshold 
θ* = 0.81 
Dimension 
j* = 1 
Weighted error 
εk = 0.28 
Voting weight 
αk = 0.96 
Error = 1
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Iteration 5: recompute weights

Threshold 
θ* = 0.81 
Dimension 
j* = 1 
Weighted error 
εk = 0.28 
Voting weight 
αk = 0.96 
Error = 1



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabAdaBoost

Iteration 6: train weak classifier 6

Threshold 
θ* = 0.47 
Dimension 
j* = 2 
Weighted error 
εk = 0.29 
Voting weight 
αk = 0.88 
Error = 1
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Iteration 6: recompute weights

Threshold 
θ* = 0.47 
Dimension 
j* = 2 
Weighted error 
εk = 0.29 
Voting weight 
αk = 0.88 
Error = 1
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Iteration 7: train weak classifier 7

Threshold 
θ* = 0.14 
Dimension, sign 
j* = 2, neg 
Weighted error 
εk = 0.29 
Voting weight 
αk = 0.88 
Error = 1
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Iteration 7: recompute weights

Threshold 
θ* = 0.14 
Dimension, sign 
j* = 2, neg 
Weighted error 
εk = 0.29 
Voting weight 
αk = 0.88 
Error = 1
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Iteration 8: train weak classifier 8

Threshold 
θ* = 0.93 
Dimension, sign 
j* = 1, neg 
Weighted error 
εk = 0.25 
Voting weight 
αk = 1.12 
Error = 0
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Iteration 8: recompute weights

Threshold 
θ* = 0.93 
Dimension, sign 
j* = 1, neg 
Weighted error 
εk = 0.25 
Voting weight 
αk = 1.12 
Error = 0
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Final Strong Classifier

Training error = 0
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Properties 

• By increasing the weight of misclassified training pairs, it focuses on the 
”hard” samples. The next weak classifier is then trained on the mistakes of 
the previous one 

• The weight distribution captures all information about previously learned 
classifiers (a Markov property – loosely speaking) 

• AdaBoost is a non-linear classifier 

• AdaBoost can be seen as a principled feature selector: it tells you what 
the best features are (ranked by the voting weight), what the best 
thresholds are how to combine them to a classifier 

• This makes the learning result interpretable and allows for knowledge 
extraction which can be checked and verified by human experts  

• Helps classifier design to be more science than art
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Summary AdaBoost 

• Ensemble methods such as boosting are meta algorithms that improve 
(“boost” ) the performance of learning algorithms by combining them 

• AdaBoost minimizes the training error (an upper bound thereof ) if each 
weak classifier performs better than random guessing (i.e. has error less 
than 0.5 for a binary classification problem) 

• Advantages  
• AdaBoost has good generalization properties, it can be proven to 

maximize the margin (proof in literature) 

• Simple to implement 

• Interpretability by taking a principled approach to feature selection 

• Drawbacks  
• Noise-sensitive due to hard margin, can overfit under such conditions 

• Not probabilistic 
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Non-Parametric Classifiers 

• So far, we have considered classifiers that learn parametric models  
from data: 
• Bayes classifier: distributions for class-conditional densities and priors 

• Logistic Regression: sigmoid mapping of linear activation function 

• Support Vector Machines: hyperplane 

• AdaBoost: set of parametric weak classifiers with associated voting weights 

• No matter how much data are thrown at a parametric model, it will 
not require more parameters   

• Learning parametric models may be costly for large training sets and 
subject to convergence issues during optimization 

• So let us consider non-parametric models
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Non-Parametric Classifiers 

• Non-parametric models are memory-based. They involve storing the 
entire training set in order to make predictions for new data points 

• They are not characterized by a bounded set of parameters but grow 
with the number of training pairs 

• This approach is called instance-based learning, memory-based 
learning or lazy learning  

• Very simple and fast to train but slow at making decisions 

• The most trivial instance-based learning algorithm is table lookup: store 
all training samples in a lookup table, and then when asked for            , 
see if       is in the table. Obviously, this method generalizes poorly 

• K-nearest neighbor classification is only a slight variation of this method 
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K-Nearest Neighbor Classifier 

• Given a new data point     , the k-nearest neighbor classifier (k-NN) finds 
the k samples that are nearest to  

• For class prediction, the algorithm takes the majority vote of the 
neighbors (plurality vote in the multi-class case) 

• Example: three classes, k = 5 and 
three query points. Using the 
Euclidian distance we find 
varying numbers of neighbors. 
The plurality votes induce the 
decision boundaries

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 9 

The kNN classifier 
• Definition 

– The kNN rule is a very intuitive method that classifies unlabeled examples 
based on their similarity to examples in the training set 

– For a given unlabeled example 𝑥௨ ∈ ℜ஽, find the 𝑘 “closest”  labeled  
examples in the training data set and assign 𝑥௨ to the class that appears 
most frequently within the k-subset 

– The kNN only requires 
• An integer k 

• A set of labeled examples (training data) 

• A  metric  to  measure  “closeness” 

– Example 
• In the example here we have three  

classes and the goal is to find a class label  
for the unknown example 𝑥௨ 

• In this case we use the Euclidean distance  
and a value of 𝑘 = 5 neighbors 

• Of the 5 closest neighbors, 4 belong to 𝜔ଵ 
and 1 belongs to 𝜔ଷ, so 𝑥௨ is assigned to 𝜔ଵ, the predominant class 

xu 

Z3 

Z1 Z2 
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Learning 

• Learning consists in storing all training samples  

• For large training sets, storage requirements may become very high and 
there are a number of extensions that address this issue by exploiting 
redundancies in the training set 

• Condensing methods decrease the number of stored instances without 
degrading performance 
• The Condensed nearest neighbor algorithm (CNN) removes points in the 

interior of decision regions. Since samples that define the discriminative 
function are located around the decision boundaries, such points can be 
safely discarded (“absorbed”) 

• Class-outliers are easily spotted by running k-NN over the training set and 
testing if a point’s k nearest neighbors include more than r examples of 
other classes
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Inference and Decision 

• Class prediction is made by a majority/plurality vote of the 
k nearest neighbors 

• If k = 1 the new data point is simply assigned to the class of its (single) 
nearest neighbor 

• The k-NN classifier approximates the discriminant function only locally 
as opposed to learning a decision boundary across the entire space 

• Naive implementations iterate through all training samples and compute 
all distances to a new data point. This O(N) approach may be too 
costly for large N 

• Smart implementations use kd-trees or hash tables (e.g. locality-
sensitive hashing) to achieve sublinear run time
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Example  

• Three classes, Euclidian distance 

• For 1-NN the discriminant function lies on a Voronoi set

So
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ce
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Example  

• Three classes, Euclidian distance 

• White areas correspond to unclassified regions where 5-NN voting is tied
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Data 5-NN
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Parameter k 

• To avoid ties, k should be an odd number or a well chosen number in the 
multi-class case 

• If ties cannot be avoided, classes can be drawn randomly 

• Small values of k may lead to overfitting in the presence of noise 

• Large values of k have the advantage of smoother decision boundaries 
and more precise information about the ambiguity of the decision via 
the ratio of samples for each class 

• However, too large values of k are detrimental: it destroys the locality of 
the estimation since farther examples are taken into account 

• The proper choice of k depends on the task and can be estimated using 
cross-validation
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Parameter k 

• 1-NN: noisy, 
overfitting 

• 19-NN: poor 
local approx. 
of true discrimi-  
nant function 

• 5-NN: good 
compromise

Data

5-NN 19-NN

1-NN

So
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Distance Metrics 

• K-NN requires a distance metric to be defined that measures the similarity 
of any two vectors in feature space 

• Typically, distances are measured with a Minkowski distance or     -norm 

• With p = 2 this is the Euclidian distance, with p = 1 we have the Manhattan 
(taxicab) distance. In the limiting case of p reaching infinity, we obtain the 
Chebyshev distance 

• With Boolean feature vectors, the number of attributes/features on which 
the two points differ is called the Hamming distance 

• There is research that focusses on distance metric learning with the goal 
to learn from data a function that measure how similar two objects are
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Distance Metrics 

• K-NN heavily relies on the choice of the distance metric, particularly in 
high-dimensional feature spaces 

• Generally, the concept of distance becomes less precise as the number of 
dimensions grows. In other words, in high dimensions "nearest" 
becomes meaningless 

• With the Euclidean distance in high dimensions, for example, all vectors 
are almost equidistant to the query vector  

• Strange things happen in high dimensional spaces. The related 
phenomena are referred to as ”curse of dimensionality” 

• Irrelevant features or noise dimensions may also affect k-NN 
performance 

• Other distance metrics may or may not perform better in such cases. The 
best metric can be found using cross-validation
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Feature Scaling 

• k-NN is sensitive to improperly scaled features, particularly when used 
with the Euclidian distance  

• Example: the x1-feature contains all the discriminatory information. The  
x2-feature is white noise, and does not contain classification information 

• Top row: both axes are scaled  
properly 
• k-NN (k = 5) finds decision boundaries  

fairly close to the optimal 

• Bottom row: x2-feature 
multiplied by 100 
• The Gaussian distance metric is  

dominated by the large values of the 
x2-feature. k-NN performs very poorly  So

ur
ce
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Feature Scaling 

• The general observation is that features with a particularly broad range 
of values dominate any distance computation between points  

• Methods that employ a distance function such as nearest neighbor 
methods and SVMs are particularly sensitive to this 

• Thus, k-NN, SVM as well as many other learning algorithms require that 
the input features are scaled to similar ranges, typically [0, 1] or [−1, 1] 

• Let x is the original value and x’ the normalized value, the simplest 
method to rescale features into a [0, 1] range is 

• Feature scaling (or data normalization ) is a generally recommended 
preprocessing step for almost all learning tasks
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Summary K-Nearest Neighbor 

• Non-parametric, instance-based classifier 

• Defined by a parameter k and a distance metric 

• The k-nearest neighbors rule is one of the oldest and simplest methods for 
pattern recognition. Good baseline classifier in a comparison 

• Trivial learning, expensive inference 

• Advantages  
• Very simple to implement  

• Naturally multi-class 

• Drawbacks  
• Large storage requirements, computationally intensive inference 

• Susceptible to the curse of dimensionality 

• Noise-sensitive to some extent, not probabilistic
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Contents 

• Introduction and basics 

• Bayes Classifier 

• Logistic Regression 

• Support Vector Machines 

• AdaBoost 

• k-Nearest Neighbor 

• Cross-validation  

• Performance measures
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Motivation 

• Given a concrete classification task at hand, how do you find the best 
classifier for the problem? And how do you choose the best values of its 
“extrinsic” parameters? 

• “Extrinsic” parameters, often called hyperparameters, are parameters that 
are not learned from data. Examples include: SVM kernel type and kernel 
parameters, neighborhood size k in k-NN or the number of rounds K in 
AdaBoost 

• This is where cross-validation comes into play 

• Cross-validation is a model selection/validation technique for assessing 
how a (learned) model will generalize to an independent data set 

• Can be used for both, comparing different classifiers and comparing 
different sets of hyperparameter values
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Validation Set 

• Can’t we just learn several classifiers and compare their training errors? 

• This does not work for two reasons: overfitting to the training data may 
occur and more complex models will almost always give fewer errors than 
simpler ones. Complex models may generalize poorly (and contradict the 
principle of Occam’s razor) 

• We therefore need a data set different from the training set. This is called 
validation set   

• A single run on that validation set might not be enough, in particular 
when data sets are small (e.g. when data or labels are costly) or when they 
contain noise and outliers that may mislead learning or validation 

• Thus, we want to average over several runs and, in addition, average 
over several validation sets in order to avoid overfitting on the data of a 
single validation set



Training, Validation and Test Set 

• How does the test set relate to training and validation sets? The test set is 
split from the data set and kept apart for final evaluation. A ratio of 2/3 
(training and validation) and 1/3 (test) is typical 

• Let D be the entire labeled data set
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         ∙ ∙ ∙                Data set                  ∙ ∙ ∙                ∙ ∙ ∙                                                         ∙ ∙ ∙

Training set Validation set Test set

Training and validation set Test set

2/3 1/3



Training, Validation and Test Set 

• Purposes of the different partitions 

• To be able to average over several validation sets, we need to generate  
K training/validation set pairs. The sets should be as large as possible so 
that error estimates are accurate, while minimizing mutual overlap 

• Before any splitting is carried out, D must be randomly permuted
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Training set Validation set Test set

Used to learn 
model parameters

Used to optimize 
hyperparameters

Used for final 
evaluation
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K-Fold Cross-Validation 

• In K-fold cross-validation, the data are partitioned into K folds. One of 
the K folds is kept out as the validation set, the remaining K–1 form the 
training set. This is repeated K times 

• K is typically 5, 10 or 30. Figure shows K = 4 

• As N increases, K can be smaller. If N is small, K should be large to allow 
large enough training sets

Training set Validation Test set

Training set Validation Test set

Test set

  Validation Test set

  

  ValidationTraining set

Run 1

Run 2

Run 3

Run 4
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Leave-One-Out Cross-Validation 

• One extreme case of K-fold cross-validation is leave-one-out cross-
validation 

• Only one sample is left out as the validation “set” (a single instance) and 
training uses N–1 samples. This will require N runs over the set pairs 

• This may be costly (we have to learn the classifier N times) but advisable in 
cases where labeled data are very hard to find such as medical diagnosis 

Random Subsampling Cross-Validation 

• Random subsampling cross-validation divides the data set into a training 
and validation set by randomly drawing samples from D 

• This decouples the number of runs from the number of folds but has the 
drawback that some samples may never be selected for validation, 
whereas others may be selected more than once
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Evaluation Procedure 

• In each of the K runs we assess the predictive accuracy of model candidate 
m by computing an error metric              over the respective validation set 

• All K validation results are then averaged to get        for model m 

• This procedure is repeated for all model candidates m (i.e. different 
classifiers or classifiers with different hyperparameters) to find m* as the 
model with the smallest averaged error  

• The final evaluation on the test set quantifies the performance of the best 
model m* using relevant metrics. This step is always carried out, also 
if cross-validation is skipped  

• Of course, once the best classifier or best set of hyperparameters for an 
application is found, we retrain the classifier on all labeled data 

• Hyperparameter optimization can be computationally very expensive



Motivation 

• Once a classifier is learned, we want to measure its performance. So far, 
we have not been very specific on how to do that in terms of 
performance measures 

• While learning and validation is done on the training and validation sets, 
performance is evaluated on an independent test set. This is done by 
iterating over the samples in the test set and comparing the predicted 
labels with the true labels 

• Doing so we count four numbers in a binary classification problem: the 
number of true positives (TP), false positives (FP), false negatives (FN), 
and true negatives (TN) 

• All measures of classification performance are based on these four 
numbers 

• Note that TP + FP + FN + TN = N
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Error Types 

• The four numbers can be arranged into a 2 x 2 confusion matrix or 
contingency table (s x s for s classes)
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Error Types 

• True positives (TP) and true negatives (TN) 
correspond to correct classifier predictions  

• False positives (FP) are like ”wrong alarms” 
or ”hallucinations” (a.k.a. Type I errors) 

• False negatives (FN) are like ”missed  
detections” (a.k.a. Type II errors) 

• Different combinations of ratios have been 
given various names. All vary between 0 and 1 

• Dark color is numerator, light color is denominator

Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabPerformance Metrics

Truth

Cl
as

sifi
er

+

+

–

–

TP FP

TNFN

Good! Bad!

Bad! Good!

Truth

Cl
as

sifi
er

+

+

–

–

TP FP

TNFN

accuracy



Precision and Recall 

• Precision is the fraction of detections  
(first row) that are truly relevant 

• A conservative/”careful” classifier has high precision 

• A precision score of 1.0 for a class C means that every item labeled as 
belonging to class C does indeed belong to class C 

• But nothing is said about the (true) number of items from class C that  
were not labeled correctly (FN) 

• Precision is also known as positive predictive value (PPV)
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Precision and Recall 

• Recall is the fraction of truly relevant instances 
(first column) that are correctly detected 

• A liberal/”loose” classifier has high recall 

• A recall of 1.0 means that every item from class C was labeled as 
belonging to class C 

• But nothing is said about how many other items were incorrectly also 
labeled as belonging to class C. 

• Recall is also known as true positive rate (TPR) or sensitivity
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F-Measure 

• Precision or recall alone cannot fully measure a classifier’s performance. 
The insight is that three of the counts in a confusion matrix can vary 
independently (the forth one follows from TP + FP + FN + TN = N) 

• Hence, no single number, and no pair of numbers, can characterize 
completely the performance of a classifier 

• Precision and recall are typically considered jointly: either by specifying 
one measure for a fixed level at the other measure (e.g. precision at recall 
of 0.75), by combing them into a single measure, or by plotting PR-curves 

• Popular single performance  
measures are accuracy (see above) 
and F-measure. The F-measure  
takes the harmonic mean of 
precision and recall
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ROC Curves 

• Receiver Operating Characteristics (ROC) are often used when evaluating 
binary classification problems. They offer a more complete picture of the 
performance of a classifier and provide a principled mechanism to explore 
operating point trade-offs 

• A ROC curve shows how the number of correctly classified positive 
examples (“benefits”) varies with the number of incorrectly classified 
negative examples (“costs”) 

• We define the false positive rate (FPR) as 

• The false positive rate is also known as false 
alarm rate or fall-out
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ROC Curves
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ROC Curves 

• ROC curves plot recall/TPR 
versus FPR as the classifier 
goes from “conservative” 
to “liberal” 

• Classifier C is close to 
random guessing  

• Classifier B is better 
than classifier C 

• Classifier A is better 
than classifier B
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ROC Curves 

• How to generate a ROC curve? Every point on the curve is a FPR/TPR-pair 
produced by the classifier at a given discrimination threshold 

• Most classifiers naturally yield either a probability or a score that 
represents the degree to which a sample is a member of a class 
• Examples: the class probability in probabilistic classifiers, the confidence in 

AdaBoost or the y-value in SVMs 

• Such classifiers then threshold this probability/score to predict the class 
• Examples: The sign(.) function in AdaBoost and SVM implies a fix discrimination 

threshold of 0 on the confidence or the y-value, respectively. For (binary) probabilistic 
classifiers the posterior class probability ratio is thresholded at a value of 1 

• Now, instead of a fix value, the discrimination threshold is varied and the 
classifier is re-evaluated at every new threshold value. This method 
produces the points for the ROC curve
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AUC and PR-Curves 

• To compare classifiers we may want to reduce ROC performance to a single 
performance measure. A common method is to calculate the area under 
the ROC curve, abbreviated AUC 

• Then, AUC(h1) > AUC(h2) means that classifier h1 has better average 
performance than classifier h2 

• However, ROC curves can present an overly optimistic view of an classifier’s 
performance if there is a large skew/imbalance in the class distribution 
(very unequal numbers of sample for the positive/negative class) 

• Precision-Recall (PR) curves are an alternative to ROC curves for tasks with 
imbalanced data. They can expose differences between classifiers that are 
not apparent in ROC space 

• PR curves plot precision versus recall and are obtained in the same way 
than ROC curves
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