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Non-Probabilistic Discriminant Functions

So far, we have considered probabilistic classifiers that compute a
posterior probability distribution p(w|x) over the world state,
for example, a discrete distribution over different class labels

We can also learn the discriminant function y = f(x) directly (even
more “directly” than a probabilistic discriminant classifier). For instance,
in a two-class problem, f(.) might be binary-valued such that f(x) = 0
represents class C; and f(x) = 1 represents class Cs

Inference and decision stages are combined

Choosing a model for f(.) and using training data to learn y = f(x)
corresponds to learning the decision boundary directly

This is unlike probabilistic classifiers where the decision boundary
followed indirectly from our choices for the involved models
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Non-Probabilistic Discriminant Functions

* Let us consider linear discriminant functions y = f(x). This choice
implies the assumption that our data are linearly separable

e Let us again consider a binary classification problem, y € {-1, +1}

» The representation of a general linear function is
y=f(x)=w'x+b

where w is the normal to the hyperplane (sometimes called weight
vector) and b is called bias

» The hyperplane itself is described by wix+b=0

b

» The perpendicular distance from the plane to the origin is Twl

» (Notice the change in notation: in this section, we adopt the standard
notion w to denote the normal to the hyperplane, not the world state)
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» Figure shows geometry
of f(x) =w'x+b
in 2 dimensions y <0

» Consider two points x4, Xp
that both lie on the plane

fxa)=wlxa+b=0
f(xp)=wlxg+b=0

wlixsi+b=wlxg+b

w' (x4 —xpB) =0

» Thus, vector w is orthogonal to every vector lying
within the hyperplane, and so w determines the orientation of the plane
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Non-Probabilistic Discriminant Functions

 Consider a point x and its orthogonal projection > =]
onto the plane x.Then X
'W' X
X=X +T /
lw| >
e Let us solve for r, the signed perpendicular distance from o
X to the plane. Multiplying both sides by wand adding b
T T
WTx—l—b_WTXJ_—l—WT’I“W Ib:WTXJ_+bIrWW_7aWW
lw| lw| lw|
[wl* f(x)
flx)=r riwl e r=i—
lw| lw|

* Note that distance r is signed

lwl]

» For x=0, the perpendicular distance from the plane to the origin is
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e This can also be seen y >0 Zo
from the definition y=0
of the dot product y < 0 R
R
w'x = ||w| [|x] cos § = [|w|| zw
F(x) = w'x + b= | W] 2w + b
b
r —f(X) Tw
il dl
>0 if 2y > H_Tbn
r =0 if zw = H_Tbll
<0 if 2g < =&
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Non-Probabilistic Discriminant Functions

» Consider a linearly separable classification problem with two classes and
outputsy € {—1,+1}

ypr = +1

Yo — —1

ys3 = +1

yn = —1
>

 How to separate the classes?
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Non-Probabilistic Discriminant Functions

» Consider a linearly separable classification problem with two classes and
outputsy € {—1,+1}

» There is an infinite number of decision boundaries that perfectly
separate the classes in the training set

e Which one to choose?
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Non-Probabilistic Discriminant Functions

» The one with the smallest generalization error!

e Thisis what Support Vector Machines (SVM) do. The approach to minimize
the generalization error is to maximize the margin
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Margin and Support Vectors

 The margin is defined as the perpendicular distance between the
decision boundary and the closest data points

support vectors

margin

>

» The closest data points are called support vectors

e The aim of Support Vector Machines is to orientate a hyperplane in such a
way as to be as far as possible from the support vectors of both classes
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Margin and Support Vectors

e This amounts to the estimation of the normal vector w and the bias b

» We have seen that w determines the orientation of the hyperplane and
the ratio — its position from the origin

Iwl|
e Thus, in addition to the direction >+
of w and the value for b, y=+1
there is one more degree y=0
of freedom, namely the y=—
length of the normal y<—1
vector ||w|| A

» We can thus define ||w||in
a way that, without loss of O

generality, for support vectors o ®
|/ (x)|=]y|=1 holds

support vectors

margin
X >
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Margin and Support Vectors

» We then define two planes H,, H.
through the support vectors.
They are described by

y>—+1

Hi: wix+b=+1

Hy: wix+b=-1

 Our training data (x;, ;) for
all 2 can thus be described by

wix;, +b>+1 for y; = +1
WTXZ-—I—b < -1 fory =-1

which can be combined to
yi (wlix; +b)—1>0
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Does not maximize
the margin

» Let uslook at this expression y=-+1
yi (wWix;+b)—1>0

e |tis aset of N constraints
on w and b to be satisfied
during the learning phase

e However, the constraints
alone do not maximize
the margin

» From our choice of ||w/|| it follows that the margin is

fx) 1

r I

o lwl wl

» Thus, maximizing the margin is equivalent to minimizing ||w ||
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» SVM learning consists in minimizing || w|| subject to the constraints
yi (Wixi+b)—1>0

» Instead of minimizing ||w|| we can also minimize > Iw|* which leads to
the formulation

1
arg min 5 |w||? s.t. yi (Wixi+b)—1>0

w,b

 This is a quadratic programming problem in which we are trying to

minimize a quadratic function subject to a set of linear inequality
constraints

» |n order to solve this constrained optimization problem, we will need to
introduce Lagrange multipliers
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Lagrange Multipliers

The method of Lagrange multipliers is a strategy for finding the local
maxima and minima of a function subject to equality constraints

Consider, for instance, the constraint optimization problem

maximize f(z, y)

subjectto g(x,y) = ¢ J(x.y)
Let us visualize contours
of f given by

flz,y) =d

for various values of fand the
contour of g given by g(z,y) = ¢
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» Following the contour lines of g = ¢, we
want to find the point on it with the
largest value of f.Then, f will be
stationary as we move along g=—c

 In general, contour lines of g = c will
cross/intersect the contour lines of f.This x

is equivalent to saying that the value of f . reo glny) =c
varies while moving along g=—c

* Only when the line for g = c meets
contour lines of f tangentially, that is,
the lines touch but do not cross, the
value of f does not change alongg=-c

> X
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e Contour lines touch when their tangent
vectors are parallel. This is the same as
saying that the gradients are parallel,
because the gradient is always
perpendicular to the contour

e This can be formally expressed as

Veyl =—AVeyg
with
~[(of Of ([ 0g Og
Vay | = <0x’ 8y> Vayg = (8:6’ 8y>
e In general X

Vx f(X) = —A Vi g(X)
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y
» The constant A is required because T e gly) =
magnitudes and directions of the gradient O S =d,”
vectors are generally not equal (AT o
\\ \\\ 4 / ,l
» Rearranging V, f = — AV, g gives bt
N Sy =d
________ A~ 5, 2

> X

* If we were to define the function
L(z,y,\) = f(z,y) + X (9(z,y) — ¢)
we could write the above condition compactly as
VeurxL(z,y,A\) =0

» This is the method of Lagrange multipliers
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Lagrange Multipliers

e The constant A is required because
magnitudes and directions of the gradient
vectors are generally not equal

» Rearranging Vi, f = — AV, g gives
Viy f +AVeyg=0

o |f we were to define the function

> X
Lagrange multiplier

L(ai, Y, )\) — f('f'?a y) + A (g(x, y) - C) T Lagrange function

: " or Lagrangian
we could write the above condition compactly as Jrang

v:c,y,A L(ZE, Y, >‘) =0

» This is the method of Lagrange multipliers
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Lagrange Multipliers

The partial derivatives w.r.t. z, y recover the parallel-gradient equation,
while the partial derivative w.r.t. A recovers the constraint

Solving the Lagrange function for its unconstrained stationary points
generates exactly the same stationary points as solving for the stationary
points of funder the constraint g

We are looking for stationary points of the Lagrange function

» Recall, stationary points are points of a differentiable function where the derivative
is zero (i.e. where the function stops increasing or decreasing, hence the name)

However, not all stationary points yield a solution of the original
optimization problem

Thus, the method of Lagrange multipliers yields only necessary conditions
for optimality and we have to evaluate f at the stationary points to find
our solution

2
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e Let us make an example:

maximize f(z,y) = z°y
. 27 2
subjectto g(z,y) =z +y~ =3

i.e. maximize f with the constraint that
the £ and y coordinates lie on the circle
around the origin with radius /3

» The Lagrangian s
L(z,y,\) = f(z,y) + X~ (g(x,y) —c) =2’y + A~ (27 +y* = 3)

* Let us partially derivate L with respect to x, y and A

- Note that, as mentioned above, V) L(x,y, A\) = 0 gives the original
constraint g(z,y) = ¢
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e The partial derivatives are

oL
oz
oL
dy
oL
O\

e Eq. (1) implies eit
eq. (3) that y = -

20y + 2 x =0 (1)
22 4+ 2y =0 2)
2 4+9y2—-3=0 3)

ner x = 0 or A = —y. In the former case, it follows by
-v3 and A =0

e Inthe case A = —y, it follows r? = 2y2 by eq. (2). Substitution into (3)
yields y = =1 and x = 4

-2

e Thus, there are six stationary points of the Lagrangian

(—v2,1), (V2,-1), (=v2,—-1), (0,v/3), (0,—3)

(V2,1),
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Lagrange Multipliers

» Evaluation of f at the stationary points

(\/21)7 (_\/571)7 (\/57_1)7
(—v2,-1), (0,v3), (0,—V3)

yields
f(:\/ivl) = 2,
f(:\/iv_l) = —2,
F£(0,£v3) = 0

» Therefore, the objective function attains the global maximum,
subject to the constraint, at (+v/2, 1)
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 In the case of multiple constraints, the same reasoning applies

 Let us recap:in the presence of a constraint, Vi f(x) does not have to be
zero at x, but it has to be entirely contained in the (1-dimensional)
subspace spanned by Vx g(x)

Vx f(x) = =A Vx g(x)

» This generalizes to multiple constraints:
for N constraints g;(x) = 0 we have

N
Vi f(%) = = > Ai Vx gi(x) .
i=1

e The subspace is now a linear combination
of the gradients Vx g;(x) with weights ),
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Lagrange Multipliers

» Thus, the Lagrangian for multiple constraints is

L(x, A) = f(x) + Z A gi(x)

where A = {1, Ao, ..., AN}

» Again, we partially derivate the Lagrangian
VX,)\ L(X, )\) =0

and solve for its stationary points, evaluate f at those points

» Again, the partial derivatives w.r.t. X recover the parallel-gradient equation,
while the partial derivative w.r.t. A recovers the constraint



Support Vector Machines e 80 (8

Social Robotics Lab

Karush-Kuhn-Tucker Conditions

* Now, assume we also have inequality constraints
» The constraint optimization problem is then
maximize f(x)

subject to g;(x) = 0 fori €{1,.., N}
and to h;(x) < 0 for¢ e {1,... M}

The problem can be solved via the general Lagrangian
M
L(X)‘I'L ‘|‘Z)\zgz ‘|'Z,uzh X
i=1

» The stationary points of the general Lagrangian are again the same than
the constraint stationary points of f
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Karush-Kuhn-Tucker Conditions

» However, inequality constraints are different than hi(x) <0
equality constraints and our previously made
considerations are not sufficient anymore /

» We require a set of additional conditions (or =9/ 77

constraints) to guarantee optimality of solutions

e The combined set of constraints is called
Karush-Kuhn-Tucker (KKT) conditions

» Allowing inequality constraints, the KKT approach
generalizes the method of Lagrange multipliers, which allows only
equality constraints

» We will not go deeper at this point, but will return to SVM learning
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» Inthe case of SVM learning, we have

1
arg min 5 |w||? s.t. yi (Wix;i+b)—1>0

w,b

with a set of NV inequality constraints

Thus, the Karush-Kuhn-Tucker (KKT) conditions apply
We allocate Lagrange multipliers A = {1, Ao, ..., AN}

1

N
Liw.b,A) = Sllwl®=> X (i (w'xi+b)—1)

i=1
where now A\; > 0 V2 (which is one of the KKT conditions)

» The minus sign comes from the KKT problem statement h;(x) < 0

o L is minimized if we minimize it w.r.t. w, b and maximize it w.r.t. A
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* Note that the Lagrangian is a function of w, b (and this is the general “x"
from the Lagrange subsection)

e Derivation of L with respect to w, b gives

oL

— =0 &
Oow

( )

ob

N 97 N
W:Z)\iyixi — =0 & ZM%ZO
i=1 i=1

.

 Instead of solving for the stationary points of L directly, let us substitute
these expressions back into the Lagrange function (eliminating w, b)

L(w,b, \)

N
1
= Wl =S A (x4 B+ 3

1

N
= SwIF =D N (v (whx +b) — 1)

2 :
1=1
N
2 , .
1=1 1=1
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» Working the new expression for the normal...

N
=) ivix;
1=1
N N N
i Yi X jy]X] i ]y@y]XZ X]
1=1 j=1

1,]

e Substitution into

N N
1
L{w,b,A) = 5 Iwil* => Xy (wixi+b0)+ ) N\
i—1 1=1

yields
L(W,b,\) = —= Z)\)\jyzij xﬁZA —bZAzyz

1,j=1
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 This gives the dual form L(\) of the primary L(w, b, \)

N N
L(\) = )\._1 o\ s s XL
()—Z i 22 iNj YilYy X Xj
i=1 i,j=1

e We came here by minimizing the original Lagrangian w.r.t. w, b. What
remains to do is to maximize it w.r.t. A.This leads to the following
dual optimization problem

maximize L(\)
subjectto A; > 0 Vi and ) . A\ y; =0

e We can solve the dual optimization problem in lieu of the primal problem

» Note that the dual form requires only the inner product of each input
vector to be calculated. This will be important for the kernel trick
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The dual optimization problem takes the form of a quadratic
programming problem in which we optimize a quadratic function of
the A;'s subject to a set of inequality constraints

There are many QP solvers for this purpose (such as Matlab’s quadprog)

We then obtain the Lagrange multipliers A and can compute

N
W = ZN‘ Yi X;
i=1

Substitution into the discriminative function model yields the dual version
of the classifier

N
f(x) =w'x+b f(X):Z)\z'yz'X;;FXWLb
1=1
Primal version Dual version
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For the computation of the normal or the dual version of the classifier, we
do not need to sum over all N training pairs. It follows from the KKT
conditions that only support vectors have non-zero A;'s

This is how we can find the support vectors among the training samples

This is noteworthy and the reason why SVM are also called sparse kernel
machines. The learned classifier only depends sparsely on the training set

What remains to do is to calculate the bias b
Remember our IV inequality constraints
yi (wWix; +b)—1>0
We have defined the normal in a way that for support vectors

T _
Ys (W Xs T b) =1 s€d —— Set of indices of the support vectors
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o Substituting the dual version of the classifier leads to

Ys; (Z As; Us; XZ;-X&L- +0) =1
SjES

» Multiplication with the label on both sides gives

v, ( Z As; Ys, Xz; Xs; +0) = ys,

SjES
e Using yi: 1 and solving for b
1
T T
b= Ysi — Z )\sj Ys; ijxsi -+ b= N_S Z (ysz o Z )\sj Ys; XSjXSi)
s;j€S ! s; €S8 s;€S )

e Although we can solve this equation for b using an arbitrary support vector
s;, it is numerically more stable to take an average over all support vectors
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Inference and Decision

e We now have the variables w and b that define our separating hyperplane’s
optimal orientation and hence our Support Vector Machine

o For classification, each new input x’is predicted by
/I - T ./
y = sign(w' x + b)
« Note the resemblance of the dual version to the k-NN classifier

N
y = S’ign(z \iyix; X' +b)
i=1
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So far, we have assumed that the training
data points are linearly separable in feature
space. But often, the class-conditional
distributions overlap in which case exact
separation is not possible

We now modify the approach so that data
points are allowed to be “on the wrong side” of the decision boundary

We introduce a penalty that increases with the distance from that
boundary. The penalty is a linear function of this distance

To this end, we introduce a slack variable & >0 Vie {1,..., N}
for each training sample (& or“xi”is pronounced zi like “high”)

They are defined to be zero for data points on or inside the “right side”
of the boundary, and &; = |y; — f(x;)| for other points
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Soft-Margin SVM

e Let us visualize &;

e The relationship

& = |y — f(xi)]
implies that points on the
boundary have & =1

» Misclassified points
receive §; > 1

e The set of /N constraints that
describe our training data (x;, ¥;) is now

WTXZ' +b>+4+1-¢& fory, =+1
wix, +b < —1 + &, for y; = —1

o Points with & > 0 that violate the margin are called non-margin support
vectors. They are also considered support vectors
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» They can be combined into

yi (Wix; +b) —14+& >0 & >0 Vi

 Notice the set of new constraints on the slack variables

» While before, in the non-overlapping case, the optimization objective was

1
arg min 5 |w||? s.t. yi (Wix;i+0)—1>0

w.,b

our goal is now to also reduce the number of misclassified data points

» This is done - in addition to the maximization of the margin - by softly
penalizing data points on the wrong side of the decision boundary

yi (Wix;+b)—14+&>0 Vi

N
1 9
are min — ||w||® 4+ C E : s.t.
%v,b 2 Il 2 & >0 Vi

1=1
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Soft-Margin SVM

Parameter C' > 0 is called stiffness parameter and controls the trade-off
between slack variable penalty and the size of the margin

The method tries to splits the training data as cleanly as possible, while still
maximizing the distance to the nearest cleanly split samples

The corresponding Lagrangian is
L(w,b, A, p) = ywu +OZ& ZA yi (wlix; +b) —1+¢&) Zmz

where \; > 0, u; > 0 Vi (KKT conditions) are the Lagrange multipliers
The corresponding extended set of KKT conditions collects all constraints
We need to minimize L w.r.t. w, b and &; and maximize it w.r.t. A and u

We proceed as before...
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Soft-Margin SVM

 Differentiating w.r.t. w, b and &; and setting the derivatives to zero

N
oL
8_W = 0 & W:;)\iyixi
N

oL

% = 0 & izzl)\iyi—o
0L

— =0 & C=)X i
O¢, i

e Substitution into the Lagrangian eliminates w, b and &, from L and we
obtain the dual form — which is identical to the non-overlapping case

N N
L(\) = )\._1 o\ s s XL
()—Z i 22 iNj YilYy X Xj
i=1

2,7=1
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Soft-Margin SVM

However, the constraints are different. From C' = \; + p; and p; > 0 Vi
follows \; < C

The dual optimization problem is then

maximize L(\)

subjectto 0 < A\; < C Vi and ) ; Ajy; =0
Again, we can use standard QP solvers for this optimization task
Support vectors are now found via the condition 0 < \; < C

What remains to do is to calculate the bias b. This is done in the same way
as before using an average over all support vectors

Class prediction (inference and decision) is then made by

y = sign(wlx’ +0b)
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Source [5]

Source [5]

 Increasing C places more weight on the slack variables &; leading to
a stricter separation of the classes and a smaller margin. Reducing C leads

to a larger margin and more misclassified points
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Non-Linear SVM
» Sofar, we looked at classification problems - .~ .-
. . . . . I of o0 & . "q...‘..:~
with linearly separable class distributions el -..;.%:-ff, R
(up to some extent of overlapping) | ;3’ ot o L
. TR ey
» When data are not linearly separable, we o ,::.:' A
have a non-linear classification problem | ".{fi':;".;}.’.,e..:-.‘z-.,--. :
o € ] G
e How can we solve such problems s
using Support Vector Machines? .
» ldea: make the data linearly separable , : °’ PRI
by mapping them into a higher T
. . S o 0B e o,
dimensional space B T S
| ° .: ':: S '.3:. Lo °
X —> gb(X) R™ _, Rd . .:..... s
i $ .o..‘o °
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Non-Linear SVM

 Consider the following mapping 25 I
k A ¥

T o RRT R X L

oo (5)-| R DT

2 \/5331332 ode° :'. - 00‘ ..o‘ ®
¢ ‘.:..
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Non-Linear SVM

 Consider the following mapping 25 I
L ;:.- °«, ° st .:.

: o R A TR

. ( s > W R —RY L EE

? V21179 AT R i
¢ ‘.:..
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Non-Linear SVM

» Consider the following mapping | {‘3. | "'».'..:

2 i I ¢
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Non-Linear SVM

Data may be linearly separable in the high dimensional space although in
the original feature space they are not linearly separable

This phenomenon is actually fairly general: if data are mapped into a space
of sufficiently high dimension, then they will almost always be linearly
separable

For example, four dimensions suffice for linearly separating a circle
anywhere in the plane (not just at the origin), and five dimensions suffice
to linearly separate any ellipse

In general (up to some exceptions), when we have N data points then they
will always be separable in spaces of N-1 dimensions or more

In order to frame the non-linear problem as a linear classification problem
in the ¢-space, we go over our learning and inference algorithms and
replace x everywhere by ¢(x):
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Non-Linear SVM

* In our Lagrange function in dual form

Z)\ — — Z)‘)‘J%%X X

1,7=1

in the expression for the bias b

1
b= N_S Z Ys; — Z )\sj Ys; Xg st)

S, €S SJES

and in the dual version of the classifier

y' = sign Z)\Zyzx "+ b)
1=1

Human-Oriented Robotics
Prof. Kai Arras
Social Robotics Lab
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Non-Linear SVM

* In our Lagrange function in dual form

N

N
L) =3 A~ 5 3 My oxi) 6 (x;)

i=1 ij=1
in the expression for the bias b

- NLS ST s — 3 Ay ws, 6(x5)T0(x,)

S, €S SjGS
and in the dual version of the classifier

N
y = sign(d _ Niyi d(x;)" ¢(x) +b)

1=1

Human-Oriented Robotics
Prof. Kai Arras
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Non-Linear SVM

* In our Lagrange function in dual form

N 1 N
L) = Z Ai — 5 Z AiAj YiY; ¢(Xz')T¢(Xj)
i=1 i,j=1

in the expression for the bias b
1 T
b= N_S Z (ysz — Z >\5j Ys; ¢(X3j) ¢(X8@))

S, €S SjGS
and in the dual version of the classifier
N
y = sign(y  Xiyi d(x:)" p(x') + b)
i=1

 Vectors x or ¢(x) enter only in the form of inner products!
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Non-Linear SVM

The fact that we can express our algorithm in terms of these inner
products is key for the kernel trick

A kernel is defined as

k(xi, %) = ¢(x:)" d(x;)

Given ¢(x), we could easily compute k(x;,X;) by finding ¢(x;)" and
¢(x;)and taking their inner product

But dimension d may be extremely large. When the transformed space is
high-dimensional, it may be very costly to compute the vectors ¢(x)
explicitly and then compute the inner product

Interestingly, computing k(x;, X;) may be very inexpensive to
calculate, even though ¢(x) itself may be very expensive to calculate
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 Thus, with an efficient way to calculate k(x;,x;), we can get SVMs to
learn in the high dimensional feature space given by ¢, but without
ever having to explicitly find or represent vectors ¢(x)

» Let us exemplify this

2.2 2.2
= X12] + 2525 + 221222122 %3&

— (517121 £6222)2 \>

= (x")’
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Non-Linear SVM

» Thus, we could have used the kernel k(x, z) = (x' z)? without explicitly
computing ¢(x)

» Let uslook at this more systematically with a feature mapping involving all

monomials of the form x;z; (the previous one had visualization purposes).
Assume again m = 2

(o

5 (m)_> T122 R2 _, T4

L2

\ L2202 )

» The cost of computing the high-dimensional ¢(x) is O(m?)
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» The inner product ¢(x)’ ¢(z) leads to the same kernel

[ 2

Z1 29
2241

\ 2D )
2 2

2 2
= X[R] T+ T1T22122 + T2X122%1 + To25

gb(X)Tgb(Z) — (3315131 L1X9o2 XX :132:132)

— (513121 —|—513222)2
~ (T2

» The cost of computing the kernel is only O(m)

Human-Oriented Robotics
Prof. Kai Arras
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e Let us convince ourselves that this kernel can be written as the inner
product ¢(x)? ¢(z) for general input vector dimensions m

k(x,z) = (XTZ)2
m m
— <Z$ZZZ> Zx]z]
i=1 j=1
m m
= JS:xzmjzzzj
i=1 j=1
m

|
/N
=
~.
=
S
N——"
/N
N
&
Q1\2
N——"

e Thisisindeed gb(X)Tgb(z) with ¢(x) as defined above
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» Consider now the kernel k(x,z) = (x'z + ¢)? Bt
It happens to contain an inner product of xand z but L1d2
this is not a requirement. Kernels are general functions 13
of x and z (or x;and x;) L2X1
LA
It can be shown that ToLs
— I3l
]‘C(X, Z) — (XTZ + C)Q ¢(X) 341
= Z (xizj)(zi25) + Z(\@C{EZ)(\@C,ZZ) + ¢ L343
i =1 i=1 V2er
\/§ch
and that this result corresponds to ¢(x)” ¢(z) with the v2cr3
feature mapping ¢(x) shown on the right for m = 3 ¢

» Note the cost difference: O(m)for kernel vs. O(m?) for ¢(x)
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Non-Linear SVM

Kernels do not transform the input data into the ¢-space and then take an
inner product. Kernels are regular functions of x

However, as shown in the examples, kernels correspond to a transforma-
tion to some ¢-space and taking an inner product there without ever
explicitly computing feature vectors in this high-dimensional space

This is called the kernel trick

Not every function has this property. Given some candidate kernel k(x, z),
how do we know if it corresponds to a scalar product in some space?

A kernel is a valid kernel if the following holds (Mercer kernels)
o Symmetry: k(x;,x;) = k(x;,X;)

* Positive semi-definiteness: let K be the Nx N Kernel matrix K;; = k(x;,%;),
then K has to be positive semi-definite, i.e. vl Ko >0 VYov e RN

T T

For example, k(x,z) = x* z is a valid kernel, k(x,z) = x—x" z is not
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e Popular examples of valid kernels include the linear kernel
k(xi,%5) = X; X;

* The degree p polynomial kernel, p > 0
k(xi,%5) = (x % + 1)P

e The Radial Basis function (RBF) or Gaussian kernel, 6 > 0

(s, %) = exp < (xi —%;)" (xi — Xj))

202

» The Gaussian kernel induces an infinite dimensional feature space
(decomposition into z;'s and x's is done in a Taylor expansion of exp)

S
iy
;’ el [
2 e
&
%
2



Support Vector Machines T e (14 L8

Social Robotics Lab

Non-Linear SVM

The idea of kernels has significantly broader applicability than SVMs
and is used in many learning algorithm that can be written in terms of
only inner products

e Examples include: perceptrons, kernel-PCA, kernel logistic regression, etc.

There are many kernel functions, including ones that act upon symbolic
inputs (as opposed to real-valued) and are defined over graphs, sets,
strings or text documents

Unless domain knowledge suggest the use of a specific kernel, the
Gaussian kernel is a good generic choice for many practical
classification tasks

The concepts of SVMs using kernels (kernelized SVMs) and soft-margin
SVMs can be readily combined
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Example Classifications

Source [5]

Source [5]

e Gaussian (RBF) kernel, 6 = 3.2
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Example Classifications

e Circular class distributions

Source [5]

e Gaussian (RBF) kernel, 6 = 3.2

» Kernel type, kernel parameters and stiffness parameter are usually
determined by cross-validation (later in this course)
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Algorithm Summary

* Learning
1. Find the Lagrange multipliers so that
N 1 N
L()\) = Z)\Z — 5 Z )\2)\3 yiyj k(Xi,Xj)
i=1 i,j=1
is maximized subjectto 0 < A\; < C Vi and > . \; y; = 0 using a QP solver
2. Determine the set of support vectors S by finding the indices such that 0 < \; < C Vi

i 1
3. Calculate the bias b = Ne Z (Ysi — Z As; Ys; K(Xs;,Xs;)
$; €S SjES

* Inference and decision

4. Predict class for new points x’ by evaluating
N

y = sign()_ X yi k(xi,x) +b)
1=1
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Summary SVM

A Support Vector Machine is a non-probabilistic discriminative classifier

Its approach to minimize the generalization error is to maximize the
margin (it's an instance of a maximum margin classifier)

Learning is framed as a constraint quadratic optimization problem
The learned classifier only depends sparsely on the training set

Non-linear SVM transform input data which are not linearly separable into
a higher dimensional feature space and apply linear separation there

The kernel trick is an efficient transformation of input data to some space
and taking an inner product in that space without ever going there. Works
even for infinite dimensional feature spaces

For non-linearly separable data there are two cases: for outliers use soft-
margin SVM, for data with inherently non-linear class distributions, use
non-linear SVM
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Summary SVM

» Advantages

o Kernel-based framework is very powerful

e Quadratic optimization problem is convex and has a unique solution
(as opposed to other classifiers such as NN, RVM)

» Efficient inference due to sparsity

» SVM classifiers work usually very well in practice

e Drawbacks

» Not probabilistic
» Binary classifier, extension to multi-class not straightforward
» Learning may be very slow for large training sets

e Constraint QP may run into numerical instabilities
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Sources and Further Readings

These slides contain material from Russell and Norvig [2] (chapter 18), Bischop [1] (chapter
7 and 9), Ng's lecture notes on SVM [3] and Fletcher [4]. Several images were produced
using Karpathy’s nice (and very instructive) SVM applet [5].
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Stanford University, 2012
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[6] Wikipedia, articles on Lagrange multipliers and Karush—-Kuhn-Tucker conditions:
http://en.wikipedia.org/wiki/Lagrange multiplier / Karush—-Kuhn-Tucker conditions



http://cs.stanford.edu/people/karpathy/svmjs/demo/

. Q S )
Human-Oriented Robotics m ﬂ S1 kel

Supervised Learning

Social Robotics Lab

To be continued in Supervised Learning, part 3/3



