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Why Learning?

An agent (a robot, an intelligent program) is learning if it improves its
performance on future tasks after making observations about the world

But if the design of an agent can be improved, why wouldnt the designer
just program in that improvement?

Two reasons

» A designer cannot anticipate all possible situations that an autonomous agent
might find itself in, particularly in a changing and dynamic world

e For many tasks, human designers have just no idea how to program a solution
themselves. Face recognition is an example: easy for humans, difficult to program

Learning is typically learning a model from data

Learning differs fundamentally fromm model-based approaches where the
model is derived from domain knowledge (in e.g. physics, social science)
or human experience
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Learning Algorithms

e Machine learning algorithms can be organized into a taxonomy based on
the desired outcome of the algorithm or the type of input (feedback)

» Supervised Learning: Inferring a function from labelled training data
Examples: classification, regression

e Unsupervised Learning: Try to find hidden patterns in unlabeled data
Examples: clustering, outlier detection

e Semi-supervised Learning: Learn a function from both, labelled and unlabeled data

» Reinforcement Learning: Learn how to act using feedback (rewards) from the world

* Machine learning has become a key area for robotics and Al, both as a
theoretical foundation and practical toolbox

e Examples: object recognition from sensory data, learning complex human
motion from demonstrations, learning social behavior by imitation, etc.
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Supervised Learning

» The task of supervised learning is as follows: given a training set of NV
example input-output pairs

(Xx1,¥1)5 (X2,92), (XN, YN)
where each y was generated by an unknown function y = f(x),

discover a function h that approximates the true function f

 Let the inputs be vector-valued in general x = (x1, 2, ..., T, ) with m
features or attributes

e Function f is also called discriminant function or model, / is called a
hypothesis

 Inrobotics, y often refers to a state of the world. Thus, we also use the
notation w for y or the more general w when the state is vector-valued
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Supervised Learning

Learning is a search through the space of possible hypothesis for one that
will perform well, in particular on new examples beyond the training set

The accuracy of a hypothesis is measured on a separate test set using
common performance metrics

We say a hypothesis generalizes well if it correctly predicts the value for y
for novel, never seen examples

This is the case, for example, in perception problems that consist in
measuring a sensory input X and inferring the state of the world w

e Examples: an object recognized in 3d point clouds, a person detected in 2D laser data,
the room that a robot is in perceived with ultrasonic sensors

The output y (or world state w) can be continuous or discrete

e Example continuous state: human body pose in 3D
e Example discrete states: presence/absence of a human, a human activity
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Classification versus Regression

» Regression:
When the world state is
continuous, we call the
inference process regression

o Classification:
When the world state is
discrete, we call the inference
process classification
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Binary classification

Multiway classification



Supervised Learning

Human-Oriented Robotics m ﬂ 1W

Social Robotics Lab

Overfitting

What means that a hypothesis/model “generalizes well"?

Overfitting occurs when a model begins to memorize the training data
rather than learning the underlying relationship

Occurs typically when fitting a statistical model with too many parameters
(e.g. a polynomial of varying degree)

What to do when several models explain the data perfectly? Take the
simplest one according to the principle of Occam’s razor

Overfitted models explain
training data perfectly but R
they do not generalize well

There is a trade-off between model
complexity/better data fit and
model simplicity and generalization
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Posterior Probability Distribution

» A major difficulty in learning is that measurements X may be stochastic
and/or compatible with many possible world states w (i.e. w could be
an explanation for many different x)

e Reasons: sensory inputs corrupted by noise and/or highly ambiguous

e Examples: 2D body pose in image data versus true 3D body pose,
auditory data from different human activities, etc.

 Inthe light of this ambiguity, it would be great to have a posterior
probability distribution p(w|x). It would describe everything we
know about the world after observing x

» Sometimes, computing p(w|x) is not tractable. In this case, we might
compute only the peak of p(w|x), the maximum a posteriori (MAP)
solution
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Model - Learning - Inference - Decision
To solve a problem of this kind, we need four things:

1. Amodel. The model frelates the (sensory) data x to the world state w.
This is a qualitative choice. A model has parameters 0

2. Alearning algorithm. The learning algorithm fits the parameters
0 to the data X using paired training samples (x;, w;)

3. Aninference algorithm. The inference algorithm takes a new
observation x and computes the posterior p(wW|X) (or approximations
thereof) over the world state w

4. A decision rule. Takes the posterior probability distribution and
makes an optimal (class) assignment of X ontow

» Sometimes, decision is postponed to later stages, e.g. in sensor fusion
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Model - Learning - Inference - Decision

1. Model examples:

» Alinearvs. a nonlinear regression model, a nonlinear SVM kernel
e Example parameters: the coefficients of the polynomial, the kernel parameters

2. Learning algorithm examples:

o Least-squares fit of parameters to data in logistic regression, convex optimization in
SVMs, (trivial) storing training data in k-Nearest Neighbor classifier

3. Inference algorithm examples:

» Bayes'rule in Bayesian classifier

4. Decision rule examples:

e Selection of maximum a posteriori class

» Weighted majority vote in AdaBoost
(example of combined decision and inference, to be explained later)
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Phases and Data Sets

Step 2 is called learning phase. It consists in learning the parameters 6
of the model f using paired training samples (x;, W;)

The test phase involves steps 3 and 4 using labelled training samples
(x;, W;) to estimate how good the model has been trained, evaluated on
relevant performance metrics (e.g. classification error)

The validation phase compares several models, obtained, for example, by
varying “extrinsic” parameters that cannot be learned. This is to determine
the best model where “best” is defined in terms of the performance metrics
(see also cross-validation later in this course)

Sometimes, the term application phase denotes the application of the
newly learned classifier to real-world data. These data are unlabeled

Accordingly, the data sets that are used in the respective phases are called
training set, test set, and validation set
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Generative vs. Discriminative Approaches

There are three options for the choice of the model in step 1. In decreasing
order of complexity:

» Generative models describe the likelihood over the data given the world.
Together with a prior, they compute the joint probability over world and
data

Joint distribution p(x,w) J

e Discriminative models describe the posterior distribution over the world
given the data. Can be used to directly predict the world state for new
observations

Posterior distribution p(w|x) J

» Non-probabilistic discriminant functions map inputs X directly onto a
class label. In this case, probabilities play no role
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Generative vs. Discriminative Approaches

 Common to both probabilistic approaches is that they compute the
posterior probability distribution p(w|x) as hypothesis h to approximate
the true underlying functiony = f(x)

» Generative classifiers do this indirectly over the likelihood p(x|w)and
the prior p(W). We choose appropriate parametric forms for the
distributions and fit the parameters using paired training samples.
Inference is done using Bayes'rule on new data

o plw)p(w
PIWIR) = T lw) p(w) dw

» Discriminative classifiers do this directly over a well chosen parametric
model for p(W|xX). In learning, we fit the parameters using paired training
samples, inference is the direct application of the model to new data
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Classifiers in this Course

o Generative classifier

» (Naive) Bayes Classifier

e Discriminative classifier

» Logistic Regression (a classification method despite its name!)

» Non-probabilistic discriminant classifier

e Support Vector Machines
o k-Nearest Neighbor classifier
» AdaBoost

» We will mostly consider binary classification problems. This is enough to
illustrate the essential ideas and simplifies notation

» We will not consider regression. Ideas are highly related to classification
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Bayes Classifier

» The Bayes classifier is a generative classifier

» The goal is to learn the posterior probability distribution p(W|x) via the
joint distribution given by the likelihood p(x|w) and prior p(W)

e |n classification, the world state is discrete and scalar. We assume that it
can take K possible values w € {1,..., K} and use the notation Cj to
denote class k for which w =k

» Thus, we are seeking to learn p(Cr|x) by applying Bayes' rule

p(x|Ck)p(Cx)  p(x[Ck) p(Ck)

Ck|x) = N
p(Ck|x) p(x) S, p(x|Ck) p(C)

» We choose parametric distribution models for the likelihoods p(x|Cy)
and the priors p(Cr ) whose parameters are learned from the data
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Bayes Classifier

e Suppose X is high dimensional (i.e. data with many features), then the
number of parameters to estimate p(x|Cx) can become very large

o Example:if X is a vector of 30 discrete boolean features and k € {0,1}
(binary classification), we need to estimate more than 2 billion
parameters

» To estimate those parameters accurately, a huge number of training
samples is needed which is impractical in many applications

» We thus require some form of prior assumption about the form of the
likelihood p(x|Cy)
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Naive Bayes Classifier

» This is the motivation for the Naive Bayes classifier

e Let us consider the numerator, expand the features/attributes of x
as x = (x1,x2,...,Ty)andrepeatedly apply the chain rule

p(x|Ck) p(Ck) = p(T1,%2,...,Zm|Ck) D(Ck)
— p(xl Ck) p(x27'° -,QjleEl,Ck;) p(ck)
— p(xl Ck) p(x2|x17 Ck) p($3, c .. 7xm|x17 X9, Ck) p(ck)

and so on...

 Now comes the“naiveness” into play: we assume that each attribute is
conditionally independent of every other attribute given class Cg
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Naive Bayes Classifier

e Formally,

(
(

p(ajik’jj? Ck)

P L4
p($i|$j,$l,ck) — P\

and soonforalli# 7,1

e Then, the numerator becomes

p(x|Cr) p(Ck)

p(21|C) p(22|Cr)

m

= || p(xilCk) p(Ck)

1=1
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e Substituting this into the posterior distribution over the world state

_ p(x[Ck) p(Cy)
PCilx) = p(x)
p(x|Cx) p(Ck)
> pet P(x|Ck) p(Ci)
leads to

~

o — LLizi p(ilCr) p(Cr) (: 11 .
e > k1 P(XICk) p(Ci) ng( P

. J

» The denominator ensures that all class probabilities sum up to 1. As it is
constant and does not depend on the class, it can be ignored if only
relative class probabilities are of interest (the typical case)
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Naive Bayes Classifier

» The corresponding graphical model for the assumption that each feature
x; is conditionally independent of every other feature x; for all 2 # 5 given
class Cg is

» The number of parameters scales now linearly with the dimension of x

» However, the assumption is a strong one. It may lead to poor
approximations of the correct class probabilities
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Likelihood and Prior

» We have to make a choice for the parametric distribution models

e A common likelihood model for real-valued data is the Gaussian
distribution

p(x;|Cr) = /\/;;Z.(,uk,(f,%) Vied{l,...,m} -

 In a binary classification problem, w € {0,1}, we have one
set of parameters {1q, 02} for class Cp and one set {1,073} for class C

p(z;|Co) = N, (o, 05)
p(x;|C1) N, (p1,07)

e They are called class-conditional densities
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Likelihood and Prior

For the prior distributions over the classes, and in light of a binary
classification problem, we may choose a Bernoulli distribution with

parameter A

p(ck) — Bernc ()\k)

The Bernoulli distribution has a single 1
parameter lambda, which determines
the probability of success that 3 o
£
p(w=1)=p(C1) = A 3
0
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Learning

Learning consists now in estimating the parameter vector
0 = {0, 08, 1, a%, A} from paired training samples

Let's look at A = p(Cy) first: with Ny being the number of training
samples for which w = 0 and N7 the number of training samples for
which w = 1, the class priors can be simply computed as

Ny Ny
p(Co) = No + Ny p(C1) = No + Ny

The likelihoods are found by fitting the parameters {10, 03 } of each

S
B
B
2
%

class-conditional density p(x;|Cy) to just the data x; where the class is 0.

Repeat for {11, 0%} and data x; where the class is 1

N
¥
7,

¥

BES
- "lif-l_
= T

B
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e The maximum likelihood (ML) estimates of the parameters are then

o = —— 25 U1 = ——— 25

.7 1 J 1
2 1 9 1 o 5
UO:FZ MO) 01:ﬁz5 '—Ml)
j=1 j=1

where 6(w; = 0) is 1 if w; =0 and 0 otherwise

» For other, non-Gaussian likelihood models, learning is very similar

 Now we have all required terms in the expression of the posterior
probability which closes the learning phase

e The next step is inference, either for the test phase where we evaluate the
performance on labelled data or for the application phase using new data
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Inference

 Inference consists in computing the posterior probability distribution
p(w|x) (or p(Ck|x) in our classification notation) via application of
Bayes'rule for new observations x

p(x|Ck) p(Ck)
S ry p(x[Ck) p(Ck)

p(x|Ck) p(Cy)

p(Crlx) =

m

p(Ck) | [ p(zilCk)

1=1

- J

N[ = N =
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Decision

Finally, the decision consists in assigning data x = (x1, 2, ..., 2y ) the
class whose posterior probability is maximal (MAP inference)

m
ATg Mmax p(Ci) | | p(ailCr)
i=1
In the binary case, we assign the label w = 1 to x if the condition holds

p(C1|x)

1 <
p(Co|x)

A decision rule divides the space of all X's into two decision regions, one
for each class, separated by decision boundaries

Can we say more about those boundaries? What are the geometrical
implications of our choices in the Bayes classifier?
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Decision Boundary

e From the condition

p(C1

I <
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X)

we can derive the decision boundary. Applying Bayes rule and taking the

logarithm gives

p(x|C1) p(C1)
0 < log p(x/Co) p(Co)
0 < logp(x|C1)p(C1) — logp(x|Co) p(Co)
0 < logp(x|C1) + logp(C1) — log p(x|Co) — log p(Co)
0 < logp(x|C1) — log p(x|Co) + (log p(C1) — log p(Co))
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Decision Boundary

e Substituting our normally distributed class-conditional density (and
assuming X = x for notation simplicity)

p(x[C1) = —= QGXP<_($2;%M1)2>

2#01

into 0 < logp(x|C1) — log p(x|Co) + (log p(C1) — log p(Co)) gives

0 < log—1s + (_(w_“l)Q) Y (_(x_“ 0)2) + (logp(Cy) — logp(Co))

2mo? 20-% \/2mo? 20 g
0 < _Bom)f @op) (log —== — log —=—=; + log p(C1) — log p(Cy))
20’% 20‘8 271‘0'% \/ 271'0(2)
—(@ —m)® —(z— po)
J < — 0
20% 203 T

where in the last step we have collected all constant terms w.r.t. x into 6
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Decision Boundary

o Ifweassume og = 01 = o (equal variance of class-conditional densities)

—(z — p1)® + (z — po)? "

0 <
202
(@ — 24z + 1) + (2 — 20 + 43)
0 < | 00
202
(,Ul = Mo) M(2) — M%
0 | - 0
= o2 33 202 0

then this is a linear function of x of the form
0 < 01x + 6

» Therefore, under the assumption of equal variance among classes, the
Bayes classifier has a linear decision boundary
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Decision Boundary

e Visualization with three classes:

0.08 —

0.06 —

0.04 —

0.02

Source [5]

o If however, we allow individual class variances, o 75 01, we have

—(z — p1)? =@ Ho)” - 0,

0 <
20% 208
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Decision Boundary

e which is a quadratic function in x of the form

0 < x'0x+60'x+6,

This decision rule induces a quadratic decision boundary

TR A AR
22 e, ,:I;"" R
LT TS
FEA g Ry
";,:*'n,:l,:r,

» Thus, in general, the Bayes classifier is a quadratic classifier
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Discussion Naive Bayes Classifier

The decoupling of the class-conditional feature distributions means that
each distribution can be independently estimated as a one dimensional
distribution

Simple and much easier than estimating high-dimensional distributions

Due to the independence assumption, the Naive Bayes classifier will fail to
produce good estimates for the correct class probabilities

However, as long as the correct class is more probable than any other
class, it will predict the correct class (in other words, the Naive Bayes
classifier will make the correct MAP decision). This is even true if the
probability estimates are grossly inaccurate

This is why the Naive Bayes classifier is surprisingly useful in practice. Itis a
popular baseline for comparisons with other methods
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77

SSEARS,

lale
L A
T o
o
L

2

SUAALE
e
a5
3 )
/,f‘-z- .
2



S

]

° ° ° Human-Oriented Robotics ‘ﬂz
Logistic Regression s (1] G2
SE

3
¥
7,

Social Robotics Lab

Logistic Regression

» Logistic Regression is a discriminative classifier

e The goalis to directly model the posterior probability distribution
p(w|x) over a discrete world state w € {1,.., K} given data x

 Let's consider a binary classification problem w € {0,1}

» The model that we choose for the posterior probability is a
Bernoulli distribution

1
p(w|x) = Berny(\)
- 1\
e The Bernoulli distribution has parameter A, which §
determines the success probability p(w = 1) = A A
 We now have to estimate A using data x
0

such that the constraint 0 < A < 1 is obeyed 0 1



Logistic Regression

Model

Human-Oriented Robotics

Prof. Kai Arras

Social Robotics Lab

> 5
Sy
=l I il
2 iy ]
e
2 S|

7,

J/]U:j]

* First, to model the probability A we introduce 10
the linear predictor function

a= ¢o+ P11

o The term is usually called activation

» The function has parameters {¢g, @1 } 16

» Let us find a more compact notation for higher dimensions

o Attach the y-intercept @q to the start of the parameter vector ¢ « [¢g

e Attach 1 to the start of the data vector x «— |1 XT]T

e The activation can now be written as

a= ¢l x

¢T]T
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Model

» Second, we pass this function through the logistic sigmoid function
sig(.) that maps the range [—o0..00] from the linear predictor to [0..1]

. 1 i P
sig(a) = I T exp(—a)

=

e The final model then becomes

p(’LU|X) — Bernw()\) -6 4 =2 0 2 4 6
= Berny,(sig(a))

1
Dot (1 + exp(—¢T X))
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o Let us plot the model in 1D for some values of ¢gand ¢1
(w[x) = B : i =
WwIX) = cI'1l )
b “\1 4 exp(—oT x) 0
=0, 01 =1 ®o=—6, 1 =3 ®o = —4, p1 = —6
p(w=0[x) p(w=0[x)
% 0 4 % 0
i i

e Green line: decision boundary
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« Forlearning, we fit the parameters {¢o, 1} in a maximum likelihood
sense by maximizing the conditional data likelihood (“goodness of fit”)
over the NN paired training samples (x1,w1), (x2,w2), -+, (XN, WN)

 The conditional data likelihood is the probability p(w|x) of the (labelled)
values w in the training set, conditioned on their corresponding X values

» Let’s do this for our Bernoulli model: for a single datum, we have
plw=1]x) = A
plw=0x)=1—-X\

e p(wlx) = A1 -

/

« For the entire training set, let X = [x1,Xa, ..., xn]and w = [w1, wa, ..., wn]|L
assuming independence of the pairs and applying chain rule, we obtain

p(w|X) :HX“L—lw%
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Learning

e Substituting the model yields

p(w|X) = f[l (1 — eXpt—qST Xi))“” (1 Jerxz}({piT;fLi))lwi

* In order to maximize this expression, it is simpler to maximize its
logarithm L. The logarithm is a monotonic transformation that does not
change the position of the maximum

1 al exp(— ¢’ x;)

=1

« Finally, we set the derivate w.r.t. the parameter ¢ to zero and solve for ¢
N N

0L 1 | !
% - Z (1 + exp(—¢! x;) N wi) Xi == Z(Slg(ai) —w;)x; = 0

i=1 1=1
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Learning

« Unfortunately, there is no closed-form solution for the parameters ¢
and we must rely on nonlinear optimization to find the maximum

» Optimization techniques start with an initial estimate of the solution, then
iteratively improve it until no more progress can be made (e.g. by following
the gradient). Here we can use Newton’s method

» What about local maxima? No problem. The log likelihood for logistic
regression is a concave function of @. Concave/convex functions have no
multiple maxima/minima and gradient-based methods are guaranteed to
find the global optimum. This can be seen from the Hessian: a negative
weighted sum of outer products is negative definite for all @

2L . T
= - > sig(as)(1 — sig(ai)) xix;
=l

» After optimization, we have a best parameters estimate ¢*
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Newton’s Method

In optimization, Newton's method finds
stationary points of differentiable
functions f(.), which are the zeros of the
first derivative, that may correspond to a
minimum or maximum of f(.)

The algorithm attempts to iteratively construct Xo
a sequence from an initial guess xo that converges
towards z* such that f’(x*) = 0.This x* is called a stationary point of f{(.)

Newton’s method evaluates the Hessians (2nd derivatives) and gradients
(1st derivatives) of the function, i.e. function is locally approximated by a
quadratic

Many more powerful algorithms exist: techniques for high dimensions,
presence of constraints (equality and inequality), multi-modality, non-
differential functions, etc.
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Inference and Decision

e Once learning is done, we make inference by simply substituting a new
observation X into our model to retrieve the posterior distribution over the
state

p(wlx) = Bemw< . >

1 + exp(—o*! x)

» The decision consists in assigning the class to X whose posterior
probability is maximal. Formally, we assign the label w = 1 if the following
condition holds:

p(w = 1|x)

=
p(w = 0[x)

From this we can derive the decision boundary
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Decision Boundary

» We substitute the logistic regression model
1

into Pt = LX) > 1 and obtain
p(w = 0|x)
A . T
1 4 exp(—¢! x;) T
1 — A exp(—¢1 x;) exp(é

» Taking the logarithm of both sides yields
qu x; > 0

which is a linear decision rule

Human-Oriented Robotics
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p(w = 1]x)

= 1|z)

Pr(w
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Summary Bayes Classifier and Logistic Regression

» The problem of classification is to learn an unknown function y = f(x)
that maps input data to class assignments

» Bayes classifier and Logistic Regression are two methods for this function
approximation task that compute a probability distribution p(w|x) over
the world state given the input data

» Bayes classifier is a generative classifier that determines the likelihood
p(x|w) (in our notation the class-conditional densities p(x|Cy) for each
class) and the prior class probabilities p(w) (or p(Cx)). This amounts to
learning the joint distribution. Then it uses Bayes' rule to compute the
sought posterior distribution p(w|x) (or p(Cg|x))

» Learning Bayes classifiers typically requires an unrealistic number of train-
ing examples. The Naive Bayes classifier assumes all features in X are
conditionally independent given Cg. This assumption dramatically reduces
the number of parameters that must be estimated to learn the classifier
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Summary Bayes Classifier and Logistic Regression

e The model is called generative because we can view the class-conditional
densities p(x|Ck) as describing how to generate synthetic data points x
conditioned on the target attribute Ci by sampling

» Bayes classifier is a quadratic classifier. Under the special assumption of
equal variance among classes, decision boundaries are linear

» We have exemplified learning with a Gaussian likelihood model (very
common for real-valued data) and Bernoulli priors. This is done by
estimating the model parameters from the training set in a ML sense

o Logistic Regression learns p(x|Cr) directly from the data

e The classifier uses a model based on a linear activation term passed
through the logistic sigmoid function
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Summary Bayes Classifier and Logistic Regression

Learning consists in estimating the parameters of this model from the
training set in an ML sense

By setting the derivative of the log likelihood w.r.t. parameters to zero, we
obtain an equation system which has no closed-form solution. We must
rely on nonlinear optimization to find the best parameters

Logistic Regression is a discriminative classifier because we can view the
distribution p(x|Cx ) as directly discriminating the value of the target
Cx for any given instance X

Logistic Regression is a linear classifier

Both classifiers are simple and popular (especially Naive Bayes). It is good
practice to use them as baselines in more complex classification tasks
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Sources and Further Readings

The introduction section mainly follows the books by Russell and Norvig [2] (chapter 18)
and Prince [1] (chapters 6 and 9). The sections on Logistic regression, Naive Bayes mainly
follow [1]. Small bits are also taken from [3] and [4]

[11  S.J.D. Prince, “Computer vision: models, learning and inference”, Cambridge
University Press, 2012. See www.computervisionmodels.com

[2]  S.Russell, P. Norvig, “Artificial Intelligence: A Modern Approach’, 3rd edition, Prentice
Hall, 2009. See http://aima.cs.berkeley.edu

[3] C.M.Bischop, “Pattern Recognition and Machine Learning’, Springer, 2nd ed., 2007.
See http://research.microsoft.com/en-us/um/people/cmbishop/prml

[4]  T.Hastie, R. Tibshirani, J. Friedman, “The Elements of Statistical Learning: Data
Mining, Inference, and Prediction”, 2nd Edition, Springer, 2009

[5] R. Gutierrez-Osuna, “Pattern Recognition, Lecture 5: Quadratic Classifiers’, Lecture
Notes, Texas A&M University, 2011
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To be continued in Supervised Learning, part 2/3



