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What is Reasoning? 

• Reasoning is taking available information and reaching a conclusion 

• A conclusion can be about what might be true in the world or about 
how to act 

• The former is typically an estimation problem, the latter is typically a 
decision and planning problem 

• Examples 
• A doctor takes information about a patient’s symptoms to reach a conclusion about 

both his/her disease and treatment 
• A mobile robot senses its surrounding to reach a conclusion about the state of the 

environment and of itself and the next motion commands 

What is Probabilistic Reasoning? 

• Reasoning under uncertainty using probability theory as a framework
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What is Probabilistic Reasoning? 

• In probabilistic reasoning we focus on models for complex systems that 
involve a significant amount of uncertainty 

• Such models can be acquired either through learning from data or from 
domain knowledge of human experts 

• They typically involve sets of random variables 
• Example: a medical diagnosis domain may involve dozens or hundreds of symptoms, 

possible diseases, patient dispositions, and other influences. Each of those factor will be 
described by a discrete (e.g. disease A, B, C, ...) or continuous (e.g. fever temperature) 
random variable 

• The task is then to reason probabilistically about the values of one or more 
of the variables given observations about some others 

• In order to do so, we estimate a joint probability distribution over the 
involved random variables
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Joint Distributions 

• Joint probability distributions are very powerful models as they describe 
the entire domain and allow for a broad range of interesting queries,  
for instance, via marginalization 

• For example, we can observe that variable xi takes on value xi* and ask 
what the probability distribution is over values of another variable xj  

• Example 
Consider a simple diagnosis system with two diseases (flu and hay fever), a 4-valued 
variable season, and two symptoms (running nose and muscle pain). Diseases and 
symptoms are either present or absent. Thus, our probability space has 2 x 2 x 4 x 2 x 2 = 
64 values 

Using a joint distribution over this space, we can, for example, ask questions such as how 
likely a patient with running nose but no muscle pain is to have flu in autumn 

Formally: 

Formulae Playground: Basics of Probabilistic Reasoning

Notation

• Data: x

• Datum: x

• Data set: X

• World state: w

• Class: C
• Class label: c

• Number of classes: K

• Number of training samples: N

• Number of data/feature dimensions: m

• Model parameters: ✓

• Alternative model parameters: �

• Bernoulli distribution: B(.)

• Normal distribution: N (.)

Basics of Probabilistic Reasoning

Random variables: x y x y

Random vector: x = [x1, x2, . . . , xn]

T

Probability distribution: p(x)

Joint probability distribution: p(x, y) p(x, y, z) p(x) p(x,y)

Bayes Networks

Medical diagnosis probability domain

p(F = true|S = autumn, R = true,M = false) = ?

1
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• Specifying a joint distribution of 64 possible values seems feasible but 
what about a larger, more realistic diagnosis problem with dozens or 
hundreds of relevant attributes? 

• With n variables that each can take m possible values, the joint distribution 
requires the specification of             values  

• The explicit representation of such joint distributions is unmanageable: 
• Computationally, inference in such distributions is extremely expensive, 

if not intractable  

• Cognitively when defined from domain knowledge of human experts. 
It is impossible to acquire so many numbers from people 

• Statistically when such models are learned from data. We would need 
a huge amount of training data to estimate this many parameters robustly 

• This was the main barrier to the adoption of probabilistic methods for 
expert systems until the development of probabilistic graphical models in 
the 1980s and 90s

Formulae Playground: Basics of Probabilistic Reasoning

Notation

• Data: x

• Datum: x

• Data set: X

• World state: w

• Class: C
• Class label: c

• Number of classes: K

• Number of training samples: N

• Number of data/feature dimensions: m

• Model parameters: ✓

• Alternative model parameters: �

• Bernoulli distribution: B(.)

• Normal distribution: N (.)

Basics of Probabilistic Reasoning

Random variables: x y x y

Random vector: x = [x1, x2, . . . , xn]

T

Probability distribution: p(x)

Joint probability distribution: p(x, y) p(x, y, z) p(x) p(x,y)

Bayes Networks

Medical diagnosis probability domain

p(F = true|S = autumn, R = true,M = false) = ?

Probabilistic graphical models

p(x1, x2, x3) = p(x1) p(x2|x1) p(x3|x1, x2)

m

n � 1

1
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Probabilistic Graphical Models 

• Probabilistic graphical models provide a framework for exploiting 
structure in joint distributions by using a graph-based representation  

• Let us start by considering a joint distribution over three random 
variables x1, x2, x3. By application of the chain rule, we can write 

• To represent this decomposition in terms of a simple graphical model, we 
proceed as follows: 

1. We introduce a node for each of the random variables and associate each 
node with the corresponding conditional distribution  

2. For each conditional distribution we add directed edges (arrows) from the 
nodes of the corresponding conditioning variables

Formulae Playground: Basics of Probabilistic Reasoning
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Probabilistic Graphical Models 

• The result is a directed graphical model representing the joint distribution 
over x1, x2, x3 

• If there is a link going from node x1 to node x2, then we say that the node 
x1 is the parent of node x2, and we say that node x2 is the child of node x1

Formulae Playground: Basics of Probabilistic Reasoning

Notation

• Data: x

• Datum: x

• Data set: X

• World state: w

• Class: C
• Class label: c

• Number of classes: K
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• Number of data/feature dimensions: m

• Model parameters: ✓

• Alternative model parameters: �

• Bernoulli distribution: B(.)

• Normal distribution: N (.)
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Probabilistic Graphical Models 

• This procedure scales to joint distributions 
over arbitrary numbers of variables 

• Such distributions can be written as a 
product of conditional probabilities, 
one for each variable, obtained by  
repeated applications of the chain rule 

• The resulting graphs are said to be fully 
connected because there is a link between 
every pair of nodes 

• It is the absence of links in the graph that conveys the interesting 
information about the properties of the joint distribution

x1

x2

x3
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Probabilistic Graphical Models 

• To illustrate this, let us consider a directed  
graph describing the joint distribution 
over variables x1 to x7 which is not fully 
connected. There is no link , for example, 
from x1 to x2 or from x3 to x7 

• We now go backwards and derive 
the joint probability distribution from 
the graph 

• There will be seven factors, one for each 
node in the graph. Each factor is a 
conditional distribution, conditioned 
only on its parents

x1

x2 x3

x4 x5

x6 x7
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Probabilistic Graphical Models 

• With                                       we find 

• We can now state the general relation- 
ship between a given directed graph 
and the corresponding distribution 

• With                                         and            
being the parents of xk, we have
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Medical diagnosis probability domain
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p(x1, x2, x3) = p(x1) p(x2|x1) p(x3|x1, x2)

m
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x = {x1, . . . , x7}

p(x) = p(x1) p(x2) p(x3) p(x4|x1, x2, x3) p(x5|x1, x3) p(x6|x4) p(x7|x4, x5)

1

p(x) = p(x1) p(x2) p(x3)

· p(x4|x1, x2, x3) p(x5|x1, x3)

· p(x6|x4) p(x7|x4, x5)

2

p(x) = p(x1) p(x2) p(x3)

· p(x4|x1, x2, x3) p(x5|x1, x3)

· p(x6|x4) p(x7|x4, x5)

x = {x1, . . . , xK} pak K

p(x) =

KY

k=1

p(xk|pak)

2

p(x) = p(x1) p(x2) p(x3)

· p(x4|x1, x2, x3) p(x5|x1, x3)

· p(x6|x4) p(x7|x4, x5)

x = {x1, . . . , xK} pak K

p(x) =

KY

k=1

p(xk|pak)

2

x1

x2 x3

x4 x5

x6 x7

p(x) = p(x1) p(x2) p(x3)

· p(x4|x1, x2, x3) p(x5|x1, x3)

· p(x6|x4) p(x7|x4, x5)

x = {x1, . . . , xK} pak K

p(x) =

KY

k=1

p(xk|pak)

2
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Probabilistic Graphical Models 

• Coming back to our medical diagnosis domain with variables flu (F), hay 
fever (H), season (S), running nose (R), and muscle pain (M). From our 
own “expertise” we can state the following conditional independencies 
• Flu only depends on season which contains all relevant information for flu. 

Given season, flu is independent on anything else: 

• The same applies for hay fever, it only depends on season: 

• Muscle pain is only caused by flu. Given flu, muscle pain is independent 
on anything else: 

• Season itself does not depend on anything: 

• Running nose depends on flu and hay fever. These variables contain all 
relevant information: 

• Repeated application of the chain rule (in a good ordering) yields

p(x) = p(x1) p(x2) p(x3)

· p(x4|x1, x2, x3) p(x5|x1, x3)

· p(x6|x4) p(x7|x4, x5)

x = {x1, . . . , xK} pak K

p(x) =

KY

k=1

p(xk|pak)

p(S, F,H,R, M) = p(S) p(F |S) p(H|S, F ) p(R|S, F,H) p(M |S, F,H,R)

p(S) = p(S)

p(F |S) = p(F |S)

p(H|S, F ) = p(H|S)

p(R|S, F,H) = p(R|F,H)

p(M |S, F,H,R) = p(M |F )

2

p(x) = p(x1) p(x2) p(x3)

· p(x4|x1, x2, x3) p(x5|x1, x3)

· p(x6|x4) p(x7|x4, x5)
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• Now let’s simplify 
 
 
and we obtain the following factorization and  
graphical model 

What have we gained? 

• This parametrization is significantly more compact, requiring only 
4 + 4 + 4 + 4 + 2 = 18 values as opposed to 64 values 

(Note that the numbers of non-redundant parameters are 17 and 63, as 
the sum over all entries in the joint distribution must sum to 1)
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Probabilistic Graphical Models 

• In general, factored representations may have exponentially fewer 
parameters than the joint distribution. The result is 
• Lower sample complexity (less data for learning) 

• Lower time complexity (less time for inference) 

• Benefits of the graph representation include 
• Modular representation of knowledge makes it easier e.g. to specify complex models  

• Local, distributed algorithms for inference and learning 

• Intuitive interpretation and visualization of a model’s structure 

• One way to think about conditional independence relations is to consider 
them as redundancies in the joint probability distribution, another way is 
to consider them as structure in the distribution
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Probabilistic Graphical Models 

• A joint distribution can be expanded by the chain rule using any order of 
variables, the result will be the same. However, each ordering produces a 
different graph with varying numbers of links/probabilities to be specified 

• Which ordering should we choose? 

• One rule is that higher-numbered variables may correspond to terminal 
nodes that represent observations (e.g. symptoms), lower-numbered 
variables may correspond to latent or hidden variables 

• The problem of finding an optimal ordering can be hard in general, human 
domain knowledge and heuristics are used in practice 

• Notice that while so far, nodes corresponded to scalar random variables, 
they can also stand for a group of variables such as a random vector



Probabilistic Graphical Models 

• We have considered directed graphical models whose links have a 
particular direction indicated by arrows 

• Such models are called Bayesian Networks (BN) 

• The other major class of graphical models are Markov Networks, also 
known as undirected graphical 
models, in which links have no 
direction. A prominent example 
are Markov Random Fields (MRF) 

• Directed graphs are useful for  
expressing causal relationships, 
whereas undirected graphs are 
better at expressing soft 
constraints between variables
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Probabilistic models

Graphical models

Directed 
– BN 
– HMM 
– ...

Undirected 
– MRF 
– CRF 
– ...



Probabilistic Graphical Models 

• Directed graphs are subject to an important restriction: there must be no 
directed cycles. It should not be possible to move along the links from 
node to node and ending up back at the start node  

• This is why such models are also called directed acyclic graphs (DAG) 

• In this course, we will only consider Bayesian Networks 

• Application example 
One of the earliest applications of Bayesian Networks was medical diagnosis. They were 
quickly found to outperform non-probabilistic expert systems in the 1980s and 90s. A 
prominent example is the Pathfinder project [2, p.67] which evolved over several 
generations into a powerful diagnosis system for more than 60 different diseases. 
Evaluations showed that diagnostic accuracy of Pathfinder was at least as good as that of 
the medical experts who designed the system and significantly better than less expert 
pathologists
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Inference in Probabilistic Graphical Models 

• So far, we have introduced the representation of probabilistic graphical 
models. What about inference and learning? 

• Let us exemplify our statement that joint probability distributions are 
powerful because they allow for a broad range of interesting queries. 
The most relevant two query types are as follows: 

• Probability query: 
with q  being a set of query variables and e = e* being the evidence (a 
set of instantiated variable-value pairs), we can compute the posterior 
probability distribution                    over the query variables given the 
evidence. Examples: 
• Robot localization:  e = camera image of the environment, q = robot pose 
• Medical diagnosis:  e = set of symptoms, q = diseases 
• Speech recognition:  e = sequence of acoustical signals, q = spoken word
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· p(x6|x4) p(x7|x4, x5)

x = {x1, . . . , xK} pak K

p(x) =

KY
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p(S) = p(S)
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p(H|S, F ) = p(H|S)

p(R|S, F,H) = p(R|F,H)
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p(S, F,H,R, M) = p(S) p(F |S) p(H|S) p(R|F,H) p(M |F )

p(S, F,H,R, M) = p(S)

· p(F |S) p(H|S)

· p(R|F,H) p(M |F )

p(S, F,H,R, M) =

p(S) p(F |S) p(H|S)

· p(R|F,H) p(M |F )

Inference

arg max

q
p(q|e = e⇤)

Sequential data, Markov model

p(x1, x2, . . . , xK) = p(x1) p(x2|x1) p(x3|x1, x2) · · · p(xk|x1, x2, . . . , xK�1)

p(x1, x2, . . . , xK) =

KY

i=1

p(xi|x1, . . . , xi�1)

2



Inference in Probabilistic Graphical Models 

• Maximum a posteriori (MAP) query: 
finding the most likely values of a variable given evidence e = e* 

• The result can also be seen as the most probable explanation 

• There might be more than one solution to this query in cases of multiple 
modes of the underlying posterior distribution 

• All variables in the domain can be query or evidence variables 

• The process of answering queries is called inference

Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabBasics of Probabilistic Reasoning

p(x) = p(x1) p(x2) p(x3)

· p(x4|x1, x2, x3) p(x5|x1, x3)

· p(x6|x4) p(x7|x4, x5)

x = {x1, . . . , xK} pak K

p(x) =

KY

k=1

p(xk|pak)

p(S, F,H,R, M) =

p(S) p(F |S) p(H|S, F ) p(R|S, F,H) p(M |S, F,H,R)

p(S,F,H,R,M) = p(S) p(F |S) p(H|S,F ) p(R|S,F,H) p(M |S,F,H,R)

p(S) = p(S)

p(F |S) = p(F |S)

p(H|S, F ) = p(H|S)

p(R|S, F,H) = p(R|F,H)

p(M |S, F,H,R) = p(M |F )

p(S, F,H,R, M) = p(S) p(F |S) p(H|S) p(R|F,H) p(M |F )

p(S, F,H,R, M) = p(S)

· p(F |S) p(H|S)

· p(R|F,H) p(M |F )

p(S, F,H,R, M) =

p(S) p(F |S) p(H|S)

· p(R|F,H) p(M |F )

Inference

arg max

q
p(q|e = e⇤)

Sequential data, Markov model

p(x1, x2, . . . , xK) = p(x1) p(x2|x1) p(x3|x1, x2) · · · p(xk|x1, x2, . . . , xK�1)

p(x1, x2, . . . , xK) =

KY

i=1

p(xi|x1, . . . , xi�1)

2



Inference in Probabilistic Graphical Models 

• One of the key advantages of graphical models is that by leveraging the 
structure of the joint distribution, inference algorithms are particu-
larly efficient and scale much better than brute force approaches  

• Generally, the complexity of inference algorithms in graphical models is 
inversely proportional to the sparsity of the graph (exploiting the 
absence of links) 

• Here we will consider inference for graphical models in particular for two 
important Bayesian network types that describe sequential data: 
hidden Markov models and linear dynamical systems 

• These are examples of temporal models
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Sequential Data 

• Sequential data often arise through measurements of time series, for 
example: 
• Rainfall measurements on successive days at a particular location 

• Daily currency exchange rates 

• Acoustic features at successive time frames used for speech recognition 

• A human’s arm and hand movements used for sign language understanding 

• Other forms of sequential data e.g. over space exist as well. The models 
considered here equally apply to them 

• In applications, we typically wish to be able to predict the next value 
given observations of the previous values (think of financial forecasting) 

• We expect that recent observations are likely to be more informative 
than more historical observations
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Sequential Data 

• This is the case when successive values in time series are correlated  

• Example: spectrogram of the spoken word “Bayes’ theorem”
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Sequential Data 

• The easiest way to treat sequential data would be simply to ignore the 
sequential aspect and consider the observations as i.i.d. random 
variables (i.i.d. = independent and identically distributed) 

• This would lead to the following graphical model 

• Such a model fails to exploit the sequential patterns in the data 

• An example of such sequential patterns is our weather

x 1 x 2 x 3 x 4
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Sequential Data 

• Suppose we observe a binary variable “sunshine” and we wish to predict 
whether or not the sun will shine on the next day. If we treat the data as 
i.i.d., then the only information that we can extract from the data is the 
(a priori) relative frequency of sunny days 

• However, we know that weather often exhibits trends that may last for 
several days. Thus, observing today’s weather is of significant help in 
predicting if the sun will shine tomorrow 

• Is there a model that allows us to exploit those correlation or trends?
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Markov Models 

• Consider a model that postulates dependencies of future observations 
on all previous observations. Such a model would be impractical 
because its complexity would grow without limits as the number of 
observations increases 

• This leads us to consider Markov Models 

• Markov models assume that future predictions are independent of all 
but the most recent observations

x 1 x 2 x 3 x 4
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Markov Models 

• Formally, we recall the chain rule 

• If we now assume that each of the conditional distributions on the right 
hand side is independent of all previous observations except the most 
recent one,

p(x|y = y

⇤
) =

p(x, y = y

⇤
)

p(y = y

⇤
)

p(x|y) =

p(x, y)

p(y)

p(x, y) = p(x|y) p(y) p(x, y) = p(y|x) p(x)

Bayes’ rule:

p(x|y) p(y) = p(y|x) p(x)

p(x|y) =

p(y|x) p(x)

p(y)

=

p(y|x) p(x)R
p(x, y) dx

=

p(y|x) p(x)R
p(y|x) p(x) dx

p(TB|Positive) =

p(Positive|TB) p(TB)

p(Positive)

p(TB|Positive) =

p(Positive|TB) p(TB)

p(Positive|TB) p(TB) + p(Positive|¬TB) p(¬TB)

Chain rule:

p(x1, x2, . . . , x
K

) = p(x1) p(x2|x1) p(x3|x1, x2) · · · p(x

k

|x1, x2, . . . , x
K�1)

p(x1, x2, . . . , x
K

) =

KY

i=1

p(x

i

|x1, . . . , xi�1)
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2

p(x) = p(x1) p(x2) p(x3)

· p(x4|x1, x2, x3) p(x5|x1, x3)

· p(x6|x4) p(x7|x4, x5)

x = {x1, . . . , xK} pak K

p(x) =

KY

k=1

p(xk|pak)

p(S, F,H,R, M) =

p(S) p(F |S) p(H|S, F ) p(R|S, F,H) p(M |S, F,H,R)

p(S,F,H,R,M) = p(S) p(F |S) p(H|S,F ) p(R|S,F,H) p(M |S,F,H,R)

p(S) = p(S)

p(F |S) = p(F |S)

p(H|S, F ) = p(H|S)

p(R|S, F,H) = p(R|F,H)

p(M |S, F,H,R) = p(M |F )

p(S, F,H,R, M) = p(S) p(F |S) p(H|S) p(R|F,H) p(M |F )

p(S, F,H,R, M) = p(S)

· p(F |S) p(H|S)

· p(R|F,H) p(M |F )

p(S, F,H,R, M) =

p(S) p(F |S) p(H|S)

· p(R|F,H) p(M |F )

Inference

arg max

q
p(q|e = e⇤)

Sequential data, Markov model

p(x1, x2, . . . , xK) = p(x1) p(x2|x1) p(x3|x1, x2) · · · p(xk|x1, x2, . . . , xK�1)

p(x1, x2, . . . , xK) =

KY

i=1

p(xi|x1, . . . , xi�1)

p(x1, x2, . . . , xK) =

KY

i=1

p(xi|x1, . . . , xi�1)

= p(x1) p(x2|x1) p(x3|x1, x2) p(x4|x1, x2, x3) · · ·
· p(xK |x1, x2, . . . , xK�1)

2



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabBasics of Probabilistic Reasoning

Markov Models 

we obtain the first-order Markov chain 

• We further make the (weak) assumption that the conditional distributions 
                       are the same for all i, corresponding to the model of a station-
ary time series. This is also known as a homogeneous Markov model

p(x1, x2, . . . , xK) =

KY

i=1

p(xi|x1, . . . , xi�1)

= p(x1) p(x2|x1) p(x3|x1, x2) p(x4|x1, x2, x3) · · ·
· p(xK |x1, x2, . . . , xK�1)

p(x1, x2, . . . , xK) = p(x1)

KY

i=2

p(xi|xi�1)

3

x 1 x 2 x 3 x 4

p(x1, x2, . . . , xK) =

KY

i=1

p(xi|x1, . . . , xi�1)

= p(x1) p(x2|x1) p(x3|x1, x2) p(x4|x1, x2, x3) · · ·
· p(xK |x1, x2, . . . , xK�1)

p(x1, x2, . . . , xK) = p(x1)

KY

i=2

p(xi|xi�1)

3
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Markov Models 

• A more flexible class of models that may be able to even better capture 
trends in the data, are higher-order Markov models in which earlier 
observations can also have an influence 

• If we allow the predictions to depend on the two previous observations, 
we obtain the second-order Markov chain

x 1 x 2 x 3 x 4

p(x1, x2, . . . , xK) =

KY

i=1

p(xi|x1, . . . , xi�1)

= p(x1) p(x2|x1) p(x3|x1, x2) p(x4|x1, x2, x3) · · ·
· p(xK |x1, x2, . . . , xK�1)

p(x1, x2, . . . , xK) = p(x1)

KY

i=2

p(xi|xi�1)

p(x1, x2, . . . , xK) = p(x1) p(x2|x1)

KY

i=3

p(xi|xi�2, xi�1)

3
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Markov Models 

• In an mth-order Markov model the conditional distribution for a particular 
variable depends on m previous variables. The resulting model may be 
powerful but expensive: 
• Suppose observations are discrete random variables that can take K possible 

values. Then, the conditional distribution                        has K(K–1) parameters 
(K–1 parameters for each of the K states of xi–1) 

• This scales to Km–1(K–1) number of parameters  
for an mth-order Markov model which is an 
exponential growth – impractical for large 
values of m 

• Is there another way to make our model  
more flexible?

a) b) c)

d) e) f)

p(x1, x2, . . . , xK) =

KY

i=1

p(xi|x1, . . . , xi�1)

= p(x1) p(x2|x1) p(x3|x1, x2) p(x4|x1, x2, x3) · · ·
· p(xK |x1, x2, . . . , xK�1)

p(x1, x2, . . . , xK) = p(x1)

KY

i=2

p(xi|xi�1)

3
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State Space Model 

• Let’s add latent or hidden variables to our model, one for each random 
variable and let the latent variables form a Markov chain 

• Notice the change in notation: we denote latent variables by x and 
observations by z  (this notation is widely used in particular for LDS) 

• It is sometimes common to shade the nodes of latent variables in the 
graphical representation

x 1 x 2 xk−1 xk xk+1

z 1 z 2 z k−1 z k z k+1
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State Space Model 

• In this model, we view the model to describe a system that evolves on 
its own, with observations of it occurring in a separate process  

• This model is called state space model or 
state observation model 

• Latent variables are also known as hidden 
variables. In the context of state space models, 
they are often and simply called states 

• They may be of different type and  
dimensionality than the observations

x 1 x 2 xk−1 xk xk+1

z 1 z 2 z k−1 z k z k+1
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State Space Model 

• In addition to the independence assumption of the first-order Markov 
model, we assume that observations at time index i are conditionally 
independent of the entire state sequence given the state variable at time 
index i 

• The joint distribution of this model is derived as follows

p(x1, x2, . . . , xK) =

KY

i=1

p(xi|x1, . . . , xi�1)
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"
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State Space Model 
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State Space Model 

• There are two important models for sequential data that are described by 
this graph 

• If the latent variables are discrete, then we obtain a hidden Markov Model 
(HMM). Observed variables can either be discrete or continuous in HMMs 

• If both the latent and the observed variables are continuous, then we 
obtain the linear dynamical system (LDS)

x 1 x 2 xk−1 xk xk+1

z 1 z 2 z k−1 z k z k+1
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• Probabilistic graphical models represent a joint distribution over a domain 
of random variables using a graph 

• The graph encodes a set of conditional independence assumptions that 
encode and leverage structure in the joint distribution 

• There are two components to a Bayesian network 
• The graph structure (conditional independence assumptions) 
• The numerical probabilities (for each variable given its parents) 

• Answering queries in a Bayesian network, called inference or reasoning, 
amounts to the computation of conditional probabilities 

• Markov models are temporal models able to describe sequential data 

• The Markov property denotes the assumption that variables in a Markov 
chain depend only on the most recent observation 

• The state space model describes systems that evolve on their own, with 
observations of it occurring in a separate process
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Sources and Further Readings 

The slides mainly follow the books by Bischop [1] (chapters 8 and 13) and Koller and 
Friedman [2] (chapters 1, 3 and 6). Small bits are taken from [3] and [4] 

Bischop [1] and also Prince [4] have well written compact introductions to probabilistic 
graphical models. A comprehensive treatment of this topic is the book by Koller and 
Friedman [2]. 

[1] C.M. Bischop, “Pattern Recognition and Machine Learning”, Springer, 2nd ed., 2007.        
See http://research.microsoft.com/en-us/um/people/cmbishop/prml 

[2] D. Koller, N. Friedman, “Probabilistic graphical models: principles and techniques”,        
MIT Press, 2009. See http://pgm.stanford.edu 

[3] K. Murphy, “An introduction to Bayesian Networks and the Bayes Net Toolbox for        
Matlab”, MIT AI Lab, May 2003 

[4] S.J.D. Prince, “Computer vision: models, learning and inference”, Cambridge        
University Press, 2012. See www.computervisionmodels.com

http://pgm.stanford.edu
http://www.computervisionmodels.com

