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• Introduction to Probability  
• Random variables 
• Joint distribution 
• Marginalization 
• Conditional probability 
• Chain rule 
• Bayes’ rule 
• Independence 
• Conditional independence 
• Expectation and Variance  

• Common Probability Distributions  
• Bernoulli distribution 
• Binomial distribution 
• Categorial distribution 
• Multinomial distribution 
• Poisson distribution 
• Gaussian distribution 
• Chi-squared distribution

We assume that you are 
familiar with the 
fundamentals of 

probability theory and 
probability distributions 

This is a quick refresher, 
we aim at ease of 

understanding rather 
than formal depth 

For a more comprehensive 
treatment, refer, e.g. to A. 
Papoulis or the references 

given on the last slide
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Why probability theory? 

• Consider a human, animal, or robot in the real world those task involves 
the solution of a set of problems (e.g. an animal looking for food, a robot 
serving coffee, ...) 

• In order to be successful, it needs to observe and estimate the state of the 
world around it and act in an appropriate way 

• Uncertainty is an inescapable aspect of the real world 

• It is a consequence of several factors, for example, 
• Uncertainty from partial, indirect and ambiguous observations of the world 

• Uncertainty in the values of observations (e.g. sensor noise) 

• Uncertainty in the origin of observations (e.g. data association) 

• Uncertainty in action execution (e.g. from limitations in the control system) 

• Probability theory is the most powerful (and accepted) formalism to deal 
with uncertainty
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Random Variables 

• A random variable x denotes an uncertain quantity  

• x could be the outcome of an experiment such as rolling a dice (numbers 
from 1 to 6), flipping a coin (heads, tails), or measuring a temperature 
(value in degrees Celcius) 

• If we observe several instances                 then it might take a different value 
each time, some values may occur more often than others. This 
information is captured by the probability distribution p(x) of x 

• A random variable may be continuous or discrete 
• Continuous random variables take values that are real numbers: finite (e.g. time taken 

to finish 2-hour exam), infinite (time until next bus arrives) 

• Discrete random variables take values from a predefined set: ordered (e.g. outcomes 1 
to 6), unordered (e.g. “sunny”, “raining”, “cloudy”), finite or infinite.
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Random Variables 

• The probability distribution p(x) of a 
continuous random variable is called 
probability density function (pdf ). 
This function may take any positive 
value, its integral always sums to one 

• The probability distribution p(x) of a 
discrete random variables is called 
probability mass function and can be 
visualized as a histogram (less often: 
Hinton diagram). Each outcome has a 
positive probability associated to it 
whose sum is always one
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Joint Probability 

• Consider two random variables x and y 

• If we observe multiple paired instances of x and y, then some outcome 
combinations occur more frequently than others. This is captured in the 
joint probability distribution of x and y, written as p(x,y) 

• A joint probability distribution may relate variables that are all discrete, all 
continuous, or mixed discrete-continuous 

• Regardless – the total probability of all outcomes (obtained by summing 
or integration) is always one 

• In general, we can have p(x,y,z). We may also write            to represent the 
joint probability of all elements in vector 

• We will write             to represent the joint distribution of all elements 
from random vectors      and  

6



a) b) c)

d) e) f)

a) b) c)

d) e) f)

Joint Probability 

• Joint probability distribution p(x,y) examples: 

Continuous: 

Discrete:                                              Mixed:
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Marginalization 

• We can recover the probability distribution of a single variable from a joint 
distribution by summing over all the other variables 

• Given a continuous p(x,y) 

• The integral becomes a sum in the discrete case 

• Recovered distributions are referred to as marginal distributions. The 
process of integrating/summing is called marginalization 

• We can recover any subset of variables. E.g., given w, x, y, z where w is 
discrete 
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Marginalization 

• Calculating the marginal distribution p(x) from p(x,y) has a simple 
interpretation: we are finding the probability distribution of x 
regardless of y (in absence of information about y) 

• Marginalization is also known as sum rule of law of total probability 

  Continuous  Discrete Mixed                                                                  
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Conditional Probability 

• The probability of x given that y takes a fixed value y* tells us the relative 
frequency of x to take different outcomes given the conditioning event 
that y equal y* 

• This is written p(x|y = y*) and is called the conditional probability of 
x given y equals y* 

• The conditional probability p(x|y) can be recovered from the joint 
distribution p(x,y) 

• This can be visualized  
by a slice p(x,y = y*) 
through the joint 
distribution p(x|y = y1)

p(x|y = y2)

p(x,y)

Source [1]
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Conditional Probability 

• The values in the slice tell us about the relative probability of x given  
y = y*, but they do not themselves form a valid probability distribution 

• They cannot sum to one as they constitute only a small part of p(x,y) 
which itself sums to one 

• To calculate a proper conditional probability distribution, we hence 
normalize by the total probability in the slice 

where we use marginalization to simplify the denominator
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Conditional Probability 

• Instead of writing 

it is common to use a more compact notation and write the conditional 
probability relation without explicitly defining the value y = y*  

• This can be rearranged to give 

• By symmetry we also have
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Bayes’ Rule 

• In the last two equations, we expressed the joint probability in two ways. 
When combining them we get a relationship between p(x|y) and p(y|x) 

• Rearranging gives 

where we have expanded the denominator using the definition of 
marginal and conditional probability, respectively
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Bayes’ Rule 

• In the last two equations, we expressed the joint probability in two ways. 
When combining them we get a relationship between p(x|y) and p(y|x) 

• Rearranging gives 

where we have expanded the denominator using the definition of 
marginal and conditional probability, respectively
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Bayes’ rule
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Bayes’ Rule 

• Each term in Bayes’ rule has a name 

• The posterior represents what we know about x given y 

• Conversely, the prior is what is known about x before considering y 

• Bayes’ rule provides a way to change your existing beliefs in the light of 
new evidence. It allows us to combine new data with the existing 
knowledge or expertise 

• Bayes’ rule is important in that it allows us to compute the conditional 
probability p(x|y) from the “inverse” conditional probability p(y|x)
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posterior
priorlikelihood

normalizer 
(a.k.a. marginal likelihood, evidence)
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Bayes’ Rule Example 

Suppose that a tuberculosis (TB) skin test is 95% accurate. That is, if the patient is TB-
infected, then the test will be positive with probability 0.95, and if the patient is 
healthy, then the test will be positive with probability 0.05. 

A person gets a positive test result. What is the probability that he is infected? 

• Wanted:                                 given                                = 0.95,                                   = 0.05 

• Naive reasoning: given that the test result is wrong 5% of the time, then the 
probability that the subject is infected is 0.95 

• Bayes’ rule: we need to consider the prior probability of TB infection              , 
and the probability of getting positive test result
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Bayes’ Rule Example (cont.) 

• What is the probability of getting a positive test result,                        ? 

• Let’s expand the denominator 

• Suppose that 1 in 1000 of subjects who get tested is infected:           

• We see that 0.95 · 0.001 = 0.00095 infected subjects get a positive result, 
and 0.05 · 0.999 = 0.04995 uninfected subjects get a positive result. Thus, 
                       = 0.00095 + 0.04995 = 0.0509 

• Applying Bayes’ rule, we obtain                                 = 0.95 · 0.001 / 0.0509 ≈ 0.0187 
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Bayes’ Rule Example (cont.) 

• Wait, only 2%? 

• This is much more than the prior infection probability of 0.001 – which shows the 
usefulness of our test – but still… 

• Insights  

• Our subject was a random person for which               = 0.001 is indeed low 

• Our clinical test is very inaccurate, in particular                                   is high 

• If we set                                    = 0.0001 (0.1 ‰) leaving all other values the same, 
we obtain a posterior probability of 0.90 

• If we set                                 = 0.9999 leaving all other values the same, we obtain 
a posterior of 0.0196 

• If we needed a more accurate result, the false positive rate is important 
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Chain Rule 

• Another immediate result of the definition of conditional probability is 
the chain rule 

• In general,  

can be compactly expressed as
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Chain Rule 

• In other words, we can express the joint probability of random variables in 
terms of the probability of the first, the probability of the second given the 
first, and so on 

• Note that we can expand this expression using any order of variables,  the 
result will be the same 

• The chain rule is also known as the product rule
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Independence 

• Assume that the value of variable x tells us nothing about variable y  
and vice versa. Formally, 

• Then, we say x and y are independent 

• When substituting this into the conditional probability relation 

we see that for independent variables the joint probability is the  
product of the marginal probabilities
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Independence 

• Let us visualize this for the joint distribution of two independent variables 
x and y  

• Independence of x and y means that every conditional distribution is 
the same (recall that the conditional distribution is the “normalized 
version of the slice”) 

• The value of y tells us nothing about x and vice versa
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a) b)

Source [1]
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Conditional Independence 

• While independence is a useful property, it is not often that we encounter 
two independent events. A more common situation is when two variables 
are independent given a third one 

• Consider three variables x1, x2, x3. Conditional independence is written as 

and implies that if we know x2, then x1 provides no further information 
about x3  (and vice versa) 

• Note that when x1 and x3 are conditionally independent given x2, this 
does not mean that x1 and x3 are themselves independent. 

• Typically occurs in chain of events: if x1 causes x2 and x2 causes x3, then 
the dependence of x3 on x1 is entirely “contained” in x2 
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Conditional Independence 

• Example: entering a hip nightclub  
• Suppose we want to reason about the chance that a student enters  

the two hottest nightclubs in town. Denote A the event “student passes bouncer of 
club A”, and B the event “student passes bouncer of club B” 

• Usually, these two events are not independent because if we learn that the student 
could enter club B, then our estimate of his/her probability of entering club A is 
higher since it is a sign that the student is hip, properly dressed and not too drunk 

• Now suppose that the doormen base their decisions only on the looks of the 
student’s company, and we know their preferences. Thus, learning that event B has 
occurred should not change the probability of event A: the looks of the company 
contains all relevant information to his/her chances of passing. Finding out whether 
he/she could enter club B does not change that 

• Formally,  

• In this case, we say      is conditionally independent of       given
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Conditional Independence 

• Example: rolling a blue and red die 
• The two results are independent of each other 

• Now someone tells you “the blue result isn't a 6 and the red result isn't a 1” 

• From this information, you cannot gain any knowledge about the red die by looking 
at the blue die. The probability for each number except 1 on the red one is still 1/5 

• The information does not affect the independence of the results 

• Now someone tells you “the sum of the two results is even” 

• This allows you to learn a lot about the red die by looking at the blue die 

• For instance, if you see a 3 on the blue die, the red die can only be 1, 3 or 5 

• The result probabilities are not conditionally independent given this information 

• Conditional independence is always relative to the given condition
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Conditional Independence 

• Variable x1 is said to be conditional independent of variable x3 given 
variable x2 if – given any value of x2 – the probability distribution of x1 is 
the same for all values of x3 and the probability distribution of x3 is the 
same for all values of x1 

• Let us look at a graphical example 

• Consider the joint density function of 
three discrete random variables 
x1, x2, x3 which take 4, 3, and 2 possible 
values, respectively 

• All 24 probabilities sum to one
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Conditional Independence 

First, let’s consider independence: 

• Figure b, marginalization of x3 : no independence between x1 and x2 

• Figure c, marginalization of x2 : no independence between x1 and x3 

• Figure d, marginalization of x1 : no independence between x2 and x3
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a) b) c) d)

e) f) g)

Source [1]
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Conditional Independence 

Now let’s consider conditional independence given x2 

• Figures e, f, g: value of x2 is fixed at 1, 2, 3 respectively 

• For fixed x2, variable x1 tells us nothing more about x3 and vice versa 

• Thus, x1 and x3 are conditionally independent given x2
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Source [1]
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Expectation 

• Intuitively, the expected value of a random variable is the value one would 
“expect” to find if one could repeat the random variable process an 
infinite number of times and take the average of the values obtained 

• Let x be a discrete random variable, then the expectation of x under the 
distribution p is 

• In the continuous case, we use density functions and integrals 

• It is a weighted average of all possible values where the weights are the 
corresponding values of the probability mass/density function 

29



Human-Oriented Robotics 
Prof. Kai Arras 

Social Robotics LabIntroduction to Probability

Expectation 

• For example, if x models the outcome of rolling a fair die, then 

• With a biased die where p(x = 6) = 0.5 and p(x = x*) = 0.1 for x* < 6, then  

• Often, we are interested in expectations of a function of random 
variables. Thus, we extend the definition to
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Expectation 

• This idea also generalizes to functions of more than one variable  

• Note however, that any function g of a set of a random variable x, or a set 
of variables                                 is essentially a new random variable y 

• For some choices of function f, the expectation is given a special name

Function f(x), f(x,y) Expectation
mean

k-th moment about zero
k-th central moment

variance
skew

kurtosis
covariance of x and y

Skew and 
kurtosis are also 

defined as 
standardized 

moments

Expectation

E[x] =

X

x

x · p(x)

E[x] =

Z
x · p(x) dx

E[x] = 1 · 1

6

+ 2 · 1

6

+ · · · + 6 · 1
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E[a] = a E[a · x + b] = aE[x] + b E[a · x] = aE[x]

E[af(x)+b] = aE[f(x)]+b E[a · f(x)] = aE[f(x)]

E[x + y] = E[x] + E[y] E[f(x) + g(x)] = E[f(x)] + E[g(x)]

E[x · y] = E[x] · E[y] E[f(x) · g(x)] = E[f(x)] · E[g(x)]
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Expectation 

• The expected value of a specified integer power of the deviation of the 
random variable from the mean is called central moment or moment 
about the mean of a probability distribution 

• Ordinary moments (or raw moments) are defined about zero 

• Moments are used to characterize the shape of a distribution 
• The mean is the first raw moment. It’s actually a location measure 

• The variance describes the distribution’s width or spread 

• The skew describes – loosely speaking – the extent to which a probability distribution 
"leans" to one side of the mean. A measure of asymmetry 

• The kurtosis is a measure of the "peakedness" of the probability distribution 
32
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Expectation 

• There are four rules for manipulating expectations, which can be easily 
proved from the original definition 

• Expected value of a constant 

• Expected value of a constant times a random variable 

• Expected value of the sum of two random variables 

• Expected value of the product of two random variables

thus

if x,y are independent
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Expectation 

• These properties also apply to functions of random variables 

• Expected value of a constant 

• Expected value of a constant times a function 

• Expected value of the sum of two functions 

• Expected value of the product of two functions

thus

if x,y are independent
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Variance 

• The variance is the second central moment, defined as 

• Alternative formulation 

• Its square root is called the standard deviation 

• The rules for manipulating variances are as follows 

Variance of a linear function 

Variance of a sum of random variables

if x,y are independent
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• Introduction to Probability  
• Random variables 
• Joint distribution 
• Marginalization 
• Conditional probability 
• Chain rule 
• Bayes’ rule 
• Independence 
• Conditional independence 
• Expectation and Variance  

• Common Probability Distributions  
• Bernoulli distribution 
• Binomial distribution 
• Categorial distribution 
• Multinomial distribution 
• Poisson distribution 
• Gaussian distribution 
• Chi-squared distribution

We assume that you are 
familiar with the 
fundamentals of 

probability theory and 
probability distributions 

This is a quick refresher, 
we aim at ease of 

understanding rather 
than formal depth 

For a more comprehensive 
treatment, refer, e.g. to A. 
Papoulis or the references 

on the last slide
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Bernoulli Distribution 

• Given a Bernoulli experiment, that is, a yes/no 
experiment with outcomes 0 (“failure”)  
or 1 (“success”) 

• The Bernoulli distribution is a discrete proba-
bility distribution, which takes value 1 with 
success probability      and value 0 with failure 
probability 1 –  

• Probability mass function  

• Notation

0 1
0

0.5

1

1−h

h

Parameters 
•      : probability of 

observing a success 

Expectation 
•   

Variance 
•  
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Binomial Distribution 

• Given a sequence of Bernoulli experiments 

• The binomial distribution is the discrete 
probability distribution of the number of 
successes m in a sequence of N indepen-
dent yes/no experiments, each with a 
success probability of 

• Probability mass function 

• Notation 
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0 10 20 30 40
0

0.1

0.2

 

 

h = 0.5, N = 20
h = 0.7, N = 20
h = 0.5, N = 40

m

Parameters 
• N : number of trials 
•      : success probability 

Expectation 
•   

Variance 
•  
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Binomial Distribution 

• The quantity 

is the binomial coefficient (“N choose m”) 
and denotes the number of ways of 
choosing m objects out of a total of N 
identical objects 

• For N = 1, the binomial distribution is the 
Bernoulli distribution 

• For fixed expectation          , the Binomial 
converges towards the Poisson 
distribution as N goes to infinity

0 10 20 30 40
0

0.1

0.2

 

 

h = 0.5, N = 20
h = 0.7, N = 20
h = 0.5, N = 40

m

Parameters 
• N : number of trials 
•      : success probability 

Expectation 
•   

Variance 
•  
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Categorial Distribution 

• Considering a single experiment with K 
possible outcomes 

• The categorial distribution is a discrete 
distribution that describes the probability of 
observing one of K possible outcomes 

• Generalizes the Bernoulli distribution 

• The probability of each outcome is specified 
as                                            with 

• Probability mass function 

• Notation

1 2 3 4 5
0

0.5

h

h

2

5

Parameters 
•     : vector of outcome 

probabilities 

Expectation 
•   

Variance 
•  
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m1

m2

Multinomial Distribution 

• Given a sequence of experiments, each 
with K possible outcomes 

• The multinomial distribution is the 
discrete probability distribution of the 
number of observations of values 
{1,2,...,K} with counts  
in a sequence of N independent trials 

• In other words: 
For N independent trials each of which 
leads to a success for exactly one of K 
categories, the multinomial distribution 
gives the probability of a combination of 
numbers of successes for the various 
categories
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Parameters 
• N : number of trials 
•      : success probabilities 

Expectation 
•   

Variance 
•  
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Multinomial Distribution 

• Each category has a given fixed success 
probability                                               subject 
to   

• Probability mass function 

• Notation  

with
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m1

m2

Parameters 
• N : number of trials 
•      : success probabilities 

Expectation 
•   

Variance 
•  
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Multinomial Distribution 

• The quantity 

is the multinomial coefficient and denotes 
the number of ways of taking N identical 
objects and assigning mk of them to bin k 

• Generalizes the binomial distribution to K 
outcomes 

• Generalizes the categorial distribution to 
sequences of N trials 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m1

m2

Parameters 
• N : number of trials 
•      : success probabilities 

Expectation 
•   

Variance 
•  
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• N = 40,        = 0.5,        = 0.25,        = 0.25 
• Maximum at m1 = 20, m2 = 10 
• Showing successes for m1, m2 

Multinomial Distribution 

• N = 10,        = 0.01,        = 0.4,        = 0.49 
• Maximum at m1 = 1, m2 = 4  
• Showing successes for m1, m2 

m1
m2m1

m2
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Poisson Distribution 

• Consider independent events that happen 
with an average rate of     over time 

• The Poisson distribution is a discrete 
distribution that describes the probability 
of a given number of events occurring in a 
fixed interval of time 

• Can also be defined over other intervals 
such as distance, area or volume 

• Probability mass function   

• Notation

0 5 10 15 20
0

0.1

0.2

0.3

0.4

 

 

h = 1
h = 4
h = 10

Parameters 
•      : average rate of events 

over time or space 

Expectation 
•   

Variance 
•  
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Gaussian Distribution 

• Most widely used distribution for 
continuous variables 

• Reasons: (i) simplicity (fully represented 
by only two moments, mean and variance) 
and (ii) the central limit theorem (CLT) 

• The CLT states that, under mild conditions, 
the mean (or sum) of many independently 
drawn random variables is distributed 
approximately normally, irrespective of 
the form of the original distribution 

• Probability density function  

−4 −2 0 2 4
0

0.5

1

 

 

 µ =  0,  m = 1
 µ = −3, m = 0.1
 µ =  2,  m = 2
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Parameters 
•      : mean 
•       : variance 

Expectation 
•   

Variance 
•  
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Gaussian Distribution 

• Notation 

• Called standard normal distribution for 
µ = 0 and      = 1 

• About 68% (~two third) of values 
drawn from a normal distribution are 
within a range of ±1 standard 
deviations around the mean  

• About 95% of the values lie within a 
range of ±2 standard deviations 
around the mean 

• Important e.g. for hypothesis testing
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Parameters 
•      : mean 
•       : variance 

Expectation 
•   

Variance 
•  
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Multivariate Gaussian Distribution 

• For d-dimensional random vectors, the 
multivariate Gaussian distribution is 
governed by a d-dimensional mean vector       
and a D x D covariance matrix      that must 
be symmetric and positive semi-definite 

• Probability density function 

• Notation

Parameters 
•     : mean vector 
•     : covariance matrix 

Expectation 
•   

Variance 
•  
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Multivariate Gaussian Distribution 

• For d = 2, we have the bivariate Gaussian 
distribution 

• The covariance matrix      (often C) deter-
mines the shape of the distribution (video)

Parameters 
•     : mean vector 
•     : covariance matrix 

Expectation 
•   

Variance 
•  
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Multivariate Gaussian Distribution 

• For d = 2, we have the bivariate Gaussian 
distribution 

• The covariance matrix      (often C) deter-
mines the shape of the distribution (video)

 5

-5

-5 5-5 5-5 5

5

-5

a ) c ) e )

b ) d ) f)

Spherical covariances Diagonal covariances Full covariances

Parameters 
•     : mean vector 
•     : covariance matrix 

Expectation 
•   

Variance 
•  

So
ur

ce
 [1

]
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Chi-squared Distribution 

• Consider k independent standard nor-
mally distributed random variables  

• The chi-squared distribution is the 
continuous distribution of a sum of the 
squares of k independent standard normal 
random variables 

• Parameter k is called the number of 
“degrees of freedom” 

• It is one of the most widely used 
probability distributions in statistical 
inference, e.g., in hypothesis testing

Parameters 
• k : degrees of freedom 

Expectation 
•   

Variance 
•  
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Chi-squared Distribution 

• Probability density function (for x ≥ 0) 

• Notation 

• For hypothesis testing, values of the 
cumulative distribution function are 
taken, typically from tables in statistics 
text books or online sources

Parameters 
• k : degrees of freedom 

Expectation 
•   

Variance 
•  
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• Uncertainty is an inescapable aspect of every system in the real world 

• Probability theory is a very powerful framework to represent, propagate, 
reduce and reason about uncertainty 

• The rules of probability are remarkably compact and simple 

• The concepts of marginalization, joint and conditional probability, 
independence and conditional independence underpin many today 
algorithms in robotics, machine learning, computer vision and AI 

• Two immediate results of the definition of conditional probability are 
Bayes’ rule and the chain rule 

• Together with the sum rule (marginalization) they form the foundation of 
even the most advanced inference and learning methods. Memorize them! 

• There are also alternative approaches to uncertainty representation 
• Fuzzy logic, possibility theory, set theory, belief functions, qualitative uncertainty 

representations
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Sources and Further Readings 

The first section, Introduction to Probability, follows to large parts chapter 2 of Prince et al. 
[1] and the nice figures are taken from his book. The section also contains material from 
chapters 1 and 2 in Koller and Friedman [2]. 

Another good compact summary of probability theory can be found in the book by 
Bischop [3]. A comprehensive treatment of probability theory is, for instance, the book by 
Papoulis and Pillai [4]. 

[1] S.J.D. Prince, “Computer vision: models, learning and inference”, Cambridge University      
Press, 2012. See www.computervisionmodels.com 

[2] D. Koller, N. Friedman, “Probabilistic graphical models: principles and techniques”, MIT      
Press, 2009. See http://pgm.stanford.edu 

[3] C.M. Bischop, “Pattern Recognition and Machine Learning”, Springer, 2nd ed., 2007.      
See http://research.microsoft.com/en-us/um/people/cmbishop/prml 

[4] A. Papoulis, S.U. Pillai, “Probability, Random Variables and Stochastic Processes”,      
McGraw-Hill, 4th edition, 2002. See http://www.mhhe.com/engcs/electrical/papoulis
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