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Exercise 3: Basics of Probabilistic Reasoning
– Solutions –

Exercise 3.1: Probabilistic Graphical Models

a) The resulting probabilistic graphical model is the one in Figure 1
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Figure 1: Probabilistic Graphical Model a

b) Figure a :

p(x) = p(x1)p(x2)p(x3)p(x4)p(x5|x1, x2, x3, x4)p(x6|x2, x3)p(x7|x1, x3, x4)p(x8|x5, x6)p(x9|x5, x6, x7)

Figure b :

p(x) = p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x2)p(x6|x4, x5)p(x7|x5)p(x8|x4, x5)p(x9|x6, x8)p(x10|x7, x8)

Exercise 3.2: Markov Chains

a) The Model 1 and 4 are not Markov Chains. Number 2 is a second order Markov Chain.
Number 3 is a first order Markov Chain.

Exercise 3.3: State-space models The full distribution is given by;

p(s1, . . . , sk, a1, . . . , ak, r1, . . . , rk) = p(s1)p(s2|s1, a1)p(s3|s2, a2) · · · p(sk|sk−1, ak−1)

· p(a1|s1)p(a2|s2) · · · p(ak|sk)

· p(r1|s1, a1) · · · p(rk|sk, ak)

= p(s1)
∏K

i=2 p(si|si−1, ai−1)
∏K

i=1 p(ai|si)
∏K

i=1 p(ri|si, ai)
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Exercise 3.4: Joint Distribution

First of all, the sum in ∑
x1

p(x) =
∑
x1

p(x1, . . . , xK)

means that we marginalize out x1 (i.e. we sum up over all possible outcomes of x1). In the
continuous case, this would be an integral over dx1.

We want to show that: ∑
x1

...
∑
xK

p(x) = 1

∑
x1

...
∑
xK

p(x) =
∑
x1

...
∑
xK

K∏
k=1

p(xk|pak) = 1

We assume that the nodes in the graph have been numbered such that x1 is the root node and
no arrows lead from a higher numbered node to a lower numbered node (i.e. nodes with lower
index are conditionally independent from nodes with higher index). We can then marginalize
over the nodes in reverse order, starting with xK . In the following product, we can extract the
K-th factor:

K∏
k=1

p(xk|pak) = p(xK |paK)
K−1∏
k=1

p(xk|pak)

which, when inserting this back into the full formula, leads to

∑
x1

...
∑
xK

K∏
k=1

p(xk|pak) =
∑
x1

...
∑
xK

p(xK |paK)

K−1∏
k=1

p(xk|pak).

Since none of the other variables depend on xK and each of the conditional distributions is
assumed to be correctly normalized, i.e.∑

xK

p(xK |paK) = 1,

we can factor out the K-th factor from the sum and then cancel out the remaining sum term
in square brackets (because it is equal to 1):

∑
x1

...
∑
xk−1

[∑
xK

p(xK |paK)

]
K−1∏
k=1

p(xk|pak) =
∑
x1

...
∑
xK−1

K−1∏
k=1

p(xk|pak)

Repeating this process K − 2 times, we are left with one final marginalization step leading to∑
x1

p(x1|∅) = 1 ⇔ 1 = 1.
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