
Human-Oriented Robotics Winter term 2014/2015
Prof. Dr. Kai Arras, Social Robotics Lab University of Freiburg
Lab instructors: Timm Linder, Luigi Palmieri, Billy Okal Department of Computer Science

Submission: Send your solution via email to palmieri@informatik.uni-freiburg.de until February 3, 2015 with

subject “[exercises] Sheet 10”. All files (Matlab scripts, exported figures, hand-written notes in pdf/jpg for-

mat) should be compressed into a single zip file named lastname sheet10.zip.

Exercise 10: Tracking and Data Association

You will need to download the Matlab frame PeopleTrackingFrame.m and matchnnsf.m and the log files

dataobs3.mat and dataobs4.mat from the course website. The functions predictstate.m and updatestate.m

from the last exercise are also provided.

Exercise 10.1: Getting Started, Plot Observation Sequences

In this exercise we extend the Kalman filter of the last exercise by the capability to handle
multiple tracks using the nearest neighbor data association filter (NNSF). The result will be a
full-blown people tracking system.

a) Start by loading the provided Matlab frame files and observation log files. Familiarize
yourself with the variables that are read in, particularly the structure obsdata. We again
assume the target has been observed at a constant frequency f and let ∆t = 1/f .

b) Plot all observation sequences into a figure (Hint: use the line style pattern ’.’ with
a large enough ’MarkerSize’ property value). Use the respective zvalid-fields to only
plot the valid observations.

Exercise 10.2: Data Association: Nearest Neighbor Standard Filter (NNSF)

We now implement the NNSF for multiple targets. The algorithm differs only very slightly
from the single-target variant and is described below.

a) Data structures. We suggest to use arrays of struct tracks that holds the track-
specific information (e.g. state predictions and posteriors) for each track, and obs with
the observation-specific information (e.g. z-vectors) for each observation. These structs
may have status-fields with values ’matched’ and ’non-matched’. The tracks structure
may also have a field ’obsid’ to store the associated observation per track.

b) State prediction. Set up the main loop over the observation sequence, and as a first
step, predict the states of all tracks using predictstate.m. Make sure to store all the
information x(k + 1|k), P(k + 1|k), ẑ(k + 1), H and mark the tracks as ’non-matched’.

c) Observation. Get the observations for the current time step. Note that not all tracks
are observed in each step. Find the valid observations, copy their values into the obs

struct and give them the status ’non-matched’.

1

d) Data association. Implement the nearest neighbor standard filter (NNSF) using the
interface [tracks,obs] = matchnnsf(tracks,obs,ALPHA) (α is defined in the frame)
to associate observation with tracks. In each step, the multi-target NNSF carries out the
following operations:

• Compute the nT (k + 1) × nZ(k + 1) Mahalanobis distance matrix D that stores
the squared Mahalanobis distances between all actual and predicted observations.
nT (k+ 1) and nZ(k+ 1) are the number of tracks and observations, respectively, in
the current time step k + 1.

• Iteratively find the minimum distance in D, test if it is smaller than the gating
threshold from the cumulative χ2 distribution (using chi2invtable(ALPHA,2)),
and if yes, mark the pairing as matched and remove the corresponding row and
column from D. Terminate if the minimum distance does not pass the validation
test anymore. Hint: Instead of deleting the rows and columns, mark them with
Inf.

e) Update. For all matched tracks, update their states using the function updatestate.m.
For the non-matched tracks, copy the predictions into the posteriors.

f) Initialize tracks. We follow a greedy track initialization strategy and create new tracks
every time an observation was not associated. For all non-matched observations, add a
track to the tracks array of struct and initialize its state with the x and y values of z
and 0 velocities. Use the provided P0 for the initial state covariance. Like in the previous
exercise, we are maintaining the history of all relevant variables per track. Here is the
place to initialize them as empty matrices.

g) Track histories. Update the track histories with state x(k+1|k+1) and state covariance
P(k + 1|k + 1).

Exercise 10.3: Plot Tracks

a) Plot the estimation histories of the track either into a new figure or on top of the obser-
vation sequences. Make sure you can distinguish the tracks from each other and from the
observations, e.g. by using different colors and/or plot symbols.

b) Load the log file dataobs4.mat and re-run the tracker. Describe what happens. Why
does it happens?

2

