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Exercise 9: Kalman Filter

For this exercise, you will need to download updatestate.m, predictstate.m, PersonTrackingFrame.m and

dataset datatracks.mat from the course website.

Exercise 9.1: Getting Started, Read From Data Set

a) Start by loading the file datatracks.mat and check the variables that you have read in.
The file contains one 2×n-matrix Z with a sequence of (x, y)-observations of the position
of a moving person observed by a simulated sensor and one Boolean 1×n-vector zvalid
whose entries indicate if the corresponding measurement is valid. We assume the target
has been observed at a constant frequency f and let ∆t = 1/f . What is the meaning of
matrix R ?

b) Plot the observation sequence into a new figure. Use the zvalid variable to only plot the
valid observations. Note that observation sequence may have gaps and outliers. Explain
possible causes of such events.

Exercise 9.2: State Representation and Initialization. We define the state representa-
tion of the filter to be x = (x, y, ẋ, ẏ)T . It contains the estimated position of the person and its
velocities in x and y directions. The associated covariance is thus a 4× 4-matrix whose entries
describe the uncertainties of the state components and covariances between them.

a) Initialize the state at time 0 from the first measurement. As our sensor can only observe
the position of the target and not its velocities, we set the velocity component to zero
and define a large initial covariance P0 that reflects our lack of knowledge with suitably
large number on its diagonal (P0 is defined in the frame).

Exercise 9.3: Motion Model. The role of the motion model is to project the state into
the future within ∆t. Here we use the transition matrix F from the ball tracking example
discussed in class. This model actually implements a constant velocity motion model that
assumes constant velocities perturbed by a normally distributed zero-mean acceleration.

a) Complete the m-file for the function predictstate to implement the motion model.
The function takes ∆t, Q, the last posterior state estimates x(k|k), P (k|k) as input and
returns the predicted state and predicted state covariance x(k + 1|k), P (k + 1|k). Q is
given in the frame.
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Exercise 9.4: Measurement Model.

a) In general, observations of the state cannot be done directly but remotely over a (linear
or non-linear) function of the state. This relationship is the measurement or observation
model, ẑ(k + 1) = H x(k + 1|k). The model serves to predict the next measurement
based on the predicted state. The term ẑ(k + 1) is the position where we expect the
next measurement to occur. Since in our case we can directly observe the two state
components x and y, H acts as a row selection matrix. Determine H and assign the
predicted measurement to a variable, e.g. zp.

b) To extend the tracker with the capability to deal with outliers we use a statistical com-
patibility test, also known as gating. Gaiting is a test if z(k+1) is statistically compatible
with the prediction ẑ(k + 1). Implement the gating test

d2 = ν(k + 1)T S(k + 1)−1 ν(k + 1)

using the innovation ν(k + 1) and innovation matrix S(k + 1):

ν(k + 1) = z(k + 1)− ẑ(k + 1)
S(k + 1) = H P (k + 1|k) HT + R

The distance d2 is the squared Mahalanobis distance, a generalized form of the Euclidian
distance. An observation is an outlier if the condition d2 < θ is not satisfied with θ
being a threshold drawn from a cumulative χ2 (chi-square) distribution. To obtain θ, use
chi2invtable(0.99,2) from the librobotics library. In case the test is not satisfied,
the state predictions are the best available estimates for the cycle’s posteriors. Thus, close
the loop by copying the state predictions into the posteriors x(k+1|k+1), P (k+1|k+1).

Exercise 9.5: Kalman Filter. Given the predicted state and the observation that success-
fully passed the gating test, we are now able to close the loop and compute the posterior state
and state covariance estimates x(k+1|k+1), P (k+1|k+1). This is done by the Kalman filter,
the optimal minimum mean-square error estimator under linear Gaussian conditions.

a) The Kalman update expressions for the mean x and the covariance P are

K(k + 1) = P (k + 1|k) HT S(k + 1)−1

x(k + 1|k + 1) = x(k + 1|k) + K(k + 1) ν(k + 1)
P (k + 1|k + 1) = P (k + 1|k)−K(k + 1) H P (k + 1|k)

Implement the update equations in the m-file for [x P] = updatestate(xp,Pp,v,S,H)
where xp,Pp denote the predicted state estimates x(k + 1|k), P (k + 1|k).

b) We want to store the histories of variables x,P,xp,Pp over the tracking sequence. This
is done by copying the estimate for each k into variables called, for instance xhist,
Phist etc. Variable xhist has dimension 4× n, Phist has dimension 4× 4× n and is a
multi-dimensional array. Concatenate the two matrices along the third dimension.

c) Track the person by running the filter over the observation sequence. Plot the estimation
histories of x(k + 1|k + 1), P (k + 1|k + 1) and x(k + 1|k), P (k + 1|k). For the covariance
matrices, use the librobotics-command drawprobellipse (use 0.95 for α). Explain
the tracking behavior of the filter in particular during maneuvers.

d) Plot the state component x, y, ẋ, ẏ, and the four diagonal elements of the P (k + 1|k + 1)
in different subfigures (e.g. using subplot). Hint: to obtain a vector of values across a
multi-dimensional array, use the squeeze command.
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