
Human-Oriented Robotics Winter term 2014/2015
Prof. Dr. Kai Arras, Social Robotics Lab University of Freiburg
Lab instructors: Timm Linder, Luigi Palmieri, Billy Okal Department of Computer Science

Submission: Send your solution via email to palmieri@informatik.uni-freiburg.de until January 20, 2015 with

subject “[exercises] Sheet 8”. All files (Matlab scripts, exported figures, hand-written notes in pdf/jpg for-

mat) should be compressed into a single zip file named lastname sheet8.zip.

Exercise 8: Hidden Markov Models

For this exercise, you will need to download the Matlab frame RunHMM.m from the course website. Note for

Octave users: we will use the built-in Matlab command hmmgenerate.

Exercise 8.1: Forward-Backward Algorithm

In this exercise you will implement the forward-backward algorithm, and compare the inference
results for filtering and smoothing. The algorithm has a compact matrix implementation which
makes it particularly simple to implement in Matlab/Octave.

Let us remember our HMM notation: hidden variables x have s ∈ {1, ..., S} states, the transi-
tion and observation models are described by matrices A and E of dimension S×S and S×O,
respectively, where O is the number of observation symbols (here we will assume S = O = 3).

The algorithm uses the probability p(zk | xk = s) which specifies how likely it is that state s
causes zk to appear. Following our definition of matrix E this corresponds to a column of E.
For mathematical convenience we place these values into a S × S diagonal matrix D. If, for
instance, p(zk | xk = 1) = (0.9 0.2)T (from the umbrella example), then

Dk =

(
0.9 0
0 0.2

)
(Hint: to do this use diag). Now, using column vectors to represent the forward and backward
probabilities αk and βk, all the computations become simple matrix-vector operations. The
forward step becomes

αk+1 = η ·Dk ·AT · αk (1)

and the backward step becomes
βk = A ·Dk · βk+1 (2)

The initial conditions are α0 = p(x0), where p(x0) is a S × 1 prior distribution, and βK = 1,
a S × 1 vector of 1’s, where K is the length of the sequence. HMM parameters and additional
explanations are given in the frame RunHMM.m. Proceed as follows:

a) Implement the forward algorithm and plot the probabilities for each state s over time.
Normalize the α’s for each step in order them to be proper probability distributions.

b) Implement the forward-backward algorithm and plot the probabilities for each state s
over time.

c) Compare the results visually, try different random seeds and rerun the algorithms. Fa-
miliarize yourself with the algorithms’ behavior.

1



Use nstates × nobservations+1 matrices for α, β and the smoothed probabilities (the +1

is for the prior α0). Iterate in both algorithms over the index range 2 to nobservations+1

corresponding to time steps k = 1, ...,K.

Exercise 8.2: Viterbi Algorithm

The Viterbi algorithm computes the most likely state sequence x∗ given a sequence of obser-
vations {z1, ..., zK}. For each step k = 1, ...,K the algorithm recursively calculates the S × 1
probability distribution µk. We will consider the matrix form of the algorithm which is ob-
tained by “diagonalizing” µk into the S × S diagonal matrix Mk (again using diag) and using
the following update equation

µk+1 = Dk ·max
(
AT ·Mk

)
(3)

The initial distribution µ1 is obtained as µ1 = p(z1 | x1) · p(x0) which in matrix form is

µ1 = D1 · p(x0). (4)

p(x0) is again the S × 1 prior distribution.

Use [m,i] = max(B,[],2) to vectorize the maximum computation and obtain both the max-
ima of the rows of B and the indices of those maxima (you might consult help max for more
information). You need to store these indices to be able to reconstruct the most likely state
sequence.

After the computation of µ1..K and the indices of the respective maxima, write an algorithm
that iteratively reconstructs the most likely state sequence x∗. First, find the maximum of µK ,
s∗K , which is already the last state of x∗. Then, find the most likely predecessor of s∗K , s∗K−1,
which is the second last state of x∗. And so on, repeat until k = 1.

a) Implement the Viterbi algorithm and plot the most likely state sequence. For µ, use
an nstates × nobservations matrix where each column represents the vector µk of a
particular step.

b) Try different random seeds and find a case where the Viterbi algorithm fails to reconstruct
the ground truth sequence (e.g. misses a relatively long subsequence of a state). Explain
the reason and fix the problem by making changes to the matrix E.

2


