
Human-Oriented Robotics Winter term 2014/2015
Prof. Dr. Kai Arras, Social Robotics Lab University of Freiburg
Lab instructors: Timm Linder, Luigi Palmieri, Billy Okal Department of Computer Science

Submission: Send your solution via email to palmieri@cs.uni-freiburg.de until Nov. 4, 2014 with subject

“[exercises] Sheet 1”. All files (Matlab scripts, exported figures, hand-written notes in pdf/jpg format) should

be compressed into a single zip file named lastname sheet1.zip.

Exercise 1: Matlab/Octave Basics

Exercise 1.1: Getting Started

a) Make sure that Matlab or Octave/Gnuplot is properly installed. Start the program,
Matlab should open its IDE, Octave should display a shell prompt such as octave:1>.

b) For Octave users: verify the installation and the interplay with gnuplot. Type octave:2>
plot(1:10,1:10) (or any another plot command). A window should pop up showing a
diagonal line from one to ten. In case of errors, return to the start.

c) Download the librobotics library from http://srl.informatik.uni-
freiburg.de/downloads. Unpack it, put it at a reasonable place and add it to your path
using the addpath command. You will use the library throughout the course.

d) Verify the system by typing help drawrobot. A help text should appear.

e) You are ready to go!

Exercise 1.2: Vectors and Matrices

a) Vectors: Create two vector a = [1 2 3 4 5], b = [0; 1; 3; 6; 10]. Display the
transpose of a and b and apply a couple of vector functions on a and b: compute, for
instance, the vector of cumulative sums for a and the vector of differences of b using
diff. Remember, you can suppress unwanted output to the shell using semicolons.

b) More vector operations: Multiply vector a with itself: a*a. Explain the result. Mul-
tiply a elementwise with itself, then take the third power of each element of a. Compute
the inner product of a and b. Compute the outer product of a and b and assign the
result to M.

c) Workspace: List the variables that are on your workspace by typing whos. There should
be (among others perhaps) a, b, M.

d) Matrices: Get the 2nd row of M, then get its 4th column by using the colon operator
:. Get a submatrix from M, e.g. the one that contains the 1st, 3rd and 5th row and the
three last columns. Note that you can use the keyword end in the expression to index
the columns.

1

e) Matrix operations: Invert matrix M and explain the result. To look for built-in com-
mands, use tab completion and the help system.

f) Relational operators: Assign all elements of M greater than 9 the value -1.

g) Size: Get familiar with the size command, display the sizes of a, b, M. Make use of the
second argument of size. Create a matrix of ones in the size of M, create a matrix of
normally distributed random numbers in the size of M.

Exercise 1.3: Plotting in 2D

a) Multiple plots: Define a range of x-values between -4 and 4. Compute sine, cosine,
arctangent, and the 3rd order polynomial y = x + 0.3 x2 − 0.05 x3 on this interval. Plot
the functions into the same window.

b) Annotations: Give the plots different colors, add title, axis labels, and a legend.

c) Line styles: Familiarize yourself with plot: line types, plot symbols and predefined
colors.

Exercise 1.4: Functions and Scripts, More Plotting

a) Functions: We will now define our first function, plotcircle that plots a circle. The
function shall take three arguments, the x- and y-coordinates of the circle center and the
radius. Hint: Create first a range of angles then define vectors of the circle’s x- and
y-values. Set the property ’LineWidth’ to 4 of the plot command.

b) Scripts: Create another file, the script from which we call plotcircle.m. We use
UpperCamelCase notation for scripts, so call it PlotCircleDemo.m. In the script, open
a new figure and write an example call of plotcircle. Use the command axis to adjust
the axes and the aspect ratio if needed.
Redefine the function plotcircle to take a forth input argument color. The argument
should be a 1-by-3 row vector of RGB-values. Extend the plot command in plotcircle
by the ’Color’ property.
Then write a for-loop in the script with 100 randomized radii, positions and RGB-colors
and create some post-modern art. Finally, turn the axes off.

Exercise 1.5: Calculate π

We want to calculate π using a Monte Carlo approach. If a circle of radius r is inscribed into
a square with side length equal to 2r, then the area of the circle is πr2, while the area of the
square is (2r)2. The ratio of the two areas equals π

4 .
If you randomly generate N uniformly distributed points in the square, approximately N π

4
points fall into the circle. The value of π can then be approximated by 4·K

N , with K being the
number of points falling into the circle.

a) Generate samples: Generate N points uniformly distributed in the range [−1, 1]×[−1, 1]

b) Count inliers: Determine the number of points K that fall into the unit circle.

c) Compute π: Calculate an estimate for π̂ and the error e = |π̂ − π|.

2

d) Plot: Plot the circle, plot the square and plot the circle inliers and outliers in two
different colors. Give the figure a title that contains the resulting π̂. Use plot to plot
the square and familiarize yourself with the scatter command for coloring the points.
Define an own colormap if needed.

Exercise 1.6: 2D Range Data Segmentation

We want to segment a 2D laser scan using a simple jump-distance criterion. This is useful if
we wanted to classify segments, for example, to find people or different objects in such data.

a) Get and plot raw data: Load the laser points from scan.txt into a matrix scan. The
readings are in polar coordinates, angles in the first column, ranges in the second. Put
them into row vectors phi and rho. Convert the points into Cartesian coordinates using
pol2cart, then plot.

b) Preprocess scan: The scan contains several erroneous readings with a maximum range
of 8 meters. This can happen, for instance, when the laser return signal is too weak
due to specular reflection or infrared-absorbing surfaces. Filter out all laser points whose
ranges are greater than 7.5 meters. Plot the filtered scan.

c) Find break points: Find the break points in the scan. A break point is where the
range values of two neighboring points differ (“jump”) by more than 0.3 meters. Hint:
Use commands diff and find.

d) Build segment data structure: Build a array of struct for segments with the following
fields: a unique identifier, the segment’s begin and end indices, the points of the segments
and the segment’s center of gravity.

e) Plot segments: Plot all segments using a different randomized color for each segment.
Annotate the segments with their identifier at the respective center of gravity-position
using the command text.

f) Filter segments: Redo steps 4 and 5 but filter out segments that have less than 3
points.

3

