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Introduction: Sequential Data (from Ch. 3)

• Sequential data often arise through measurements of time series, for 
example:
• Rainfall measurements on successive days at a particular location

• Daily currency exchange rates

• Acoustic features at successive time frames used for speech recognition

• A human’s arm and hand movements used for sign language understanding

• Other forms of sequential data e.g. over space exist as well. The models 
considered here equally apply to them

• In applications, we typically wish to be able to predict the next value 
given observations of the previous values (e.g. in !nancial forecasting)

• We expect that recent observations are likely to be more informative 
than more historical observations
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Introduction: Sequential Data (from Ch. 3)

• This is the case when successive values in time series are correlated 

• Examples: spectrogram of the spoken words, weather

Time

Time
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ce
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]
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Introduction: Markov Models (from Ch. 3)

• Consider a model that postulates dependencies of future observations 
on all previous observations. Such a model would be impractical 
because its complexity would grow without limits as the number of 
observations increases

• This leads us to consider Markov Models

• Markov models assume that future predictions are independent of all 
but the most recent observations

x1 x2 x3 x4
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Introduction: Markov Models (from Ch. 3)

• Formally, we recall the chain rule

• If we now assume that each of the conditional distributions on the right 
hand side is independent of all previous observations except the most 
recent one,
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Introduction: Markov Models (from Ch. 3)

we obtain the !rst-order Markov chain

x1 x2 x3 x4
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Introduction: State Space Model (from Ch. 3)

• Let’s add latent or hidden variables to our model, one for each random 
variable and let the latent variables form a Markov chain

• Notice the change in notation: we denote latent variables by     and 
observations by     (this notation is widely used in particular for LDS)

• It is sometimes common to shade the nodes of latent variables in the 
graphical representation

x1 x2 xk−1 xk xk+1

z1 z2 zk−1 zk zk+1
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Introduction: State Space Model (from Ch. 3)

• In this model, we view the model to describe a system that evolves on 
its own, with observations of it occurring in a separate process 

• This model is called state space model or state observation model

• Hidden variables     are often called states. They are un-
observable and typically what we want to estimate

• Variables     are called observations (or “evidence
variables”). It is only through the observations that we
can indirectly estimate the    ’s

• Observations may be of different type and
dimensionality than the states

• We assume the interval ¢t to be !xed. Thus we can
label time by integer time indices k (or t, i)

x1 x2 xk−1 xk xk+1

z1 z2 zk−1 zk zk+1
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Introduction: State Space Model (from Ch. 3)

• In addition to the independence assumption of the !rst-order Markov 
model, we assume that observations at time index k are conditionally 
independent of the entire state sequence given the state variable at 
time index k

• The joint distribution of this model is derived as follows
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Introduction: State Space Model (from Ch. 3)

• In addition to the independence assumption of the !rst-order Markov 
model, we assume that observations at time index k are conditionally 
independent of the entire state sequence given the state variable at 
time index k

• The joint distribution of this model is derived as follows
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Introduction: State Space Model (from Ch. 3)

• Two important models for sequential data that are described by this graph

1. Discrete case: if the latent variables are discrete, we obtain a hidden 
Markov Model (HMM). Observed variables can either be discrete or 
continuous in HMMs

2. Continuous case: If both the latent and the observed variables are 
continuous and Gaussian, we have the linear dynamical system (LDS)

x1 x2 xk−1 xk xk+1

z1 z2 zk−1 zk zk+1
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State Space Model

• The state space representation is made up by three components:

1. The transition model describes how the world/system evolves. It 
speci!es the probability distribution                              over the latest
state variable given the previous values. Thanks to the Markov 
assumption, this is

 for !rst-order Markov chains. For second-order Markov chains we have

 where we have introduced the notation           to denote the sequence
 of states
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State Space Model

• The state space representation is made up by three components:

2. The observation (or sensor) model speci!es the probability 
distribution over the observed variable given the previous state and 
observation sequence

 This is simpli!ed to be

 which is sometimes called the sensor Markov assumption

3. The prior probability distribution over the state at time 0,         ,
sometimes also called initial state model 
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State Space Model

• With that, we have speci!ed the complete joint distribution over our 
domain/over all our random variables

x0 x1 x2 xk−1 xk

z1 z2 zk−1 zk

Prior
Observation 

model
Transition 

model
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State Space Model Example

• Suppose you are a security guard stationed at an underground facility
and the only way to know whether it is raining today is by observing
the director who comes in with or without an umbrella each morning

• Let                           be the binary state variable and                                   the 
binary observation variable, both with values true or false. Then, the state
space model is

So
ur

ce
 [1

]

Observation 
model

Raint

Umbrellat

Raint–1

Umbrellat–1

Raint+1

Umbrellat+1

Rt -1 tP(R )

0.3f
0.7t

tR tP(U  )
0.9t
0.2f

 Rk  p(Uk)
 true 0.9
 false 0.2

Transition 
model

 Rk–1  p(Rk) p(¬Rk)
 true 0.7 0.3
 false 0.3 0.7

Rain0 . . .

 p(R0) p(¬R0)
 0.5 0.5

Prior
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State Space Model Example

• Note the dependencies between states and sensors: arrows go from actual 
states to sensor values because the state of the world/system causes the 
sensors to take on particular values: the rain causes the umbrella to appear

• The inference process goes in the other direction: we seek to estimate the 
state given observations of the world

So
ur

ce
 [1

]

Observation 
model

Raint

Umbrellat

Raint–1

Umbrellat–1

Raint+1

Umbrellat+1

Rt -1 tP(R )

0.3f
0.7t

tR tP(U  )
0.9t
0.2f

 Rk  p(Uk)
 true 0.9
 false 0.2

Transition 
model

 Rk–1  p(Rk) p(¬Rk)
 true 0.7 0.3
 false 0.3 0.7

Rain0 . . .

 p(R0) p(¬Rk)
 0.5 0.5

Prior
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State Space Model

• The example uses a !rst-order Markov process which implies that the 
current state variable contains all the information needed to compute
the probability of rain for the next time step

• Whether this assumption is reasonable depends on the context/domain. 
The assumption may be exactly true or may be approximate

• There are two ways to improve the accuracy of approximate models:

• Increasing the order of the Markov process model. E.g. we could add Raink–2 as
a parent of Raink

• Adding more state variables. For example, we could add Season or Humidity.
However, adding more variables might improve the system’s predictive power but 
increases the prediction requirements: we have to predict the new variables as well

• Looking for a self-sufficient set of variables that re$ect the physics of the 
modeled process
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Inference

• Having set up the representation of a generic temporal model consisting 
of             ,                        , and                   , we can formulate the four basic 
inference tasks:

• Filtering: computing the posterior distribution over the most
recent state given all observations to date

Keeping track of the system’s current state in an online fashion

• Prediction: computing the posterior distribution over the future
state given all observations to date

Projecting the state into the future without observations (e.g. weather)

20



Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Temporal Reasoning

Inference

• Smoothing: computing the posterior distribution over a past state 
given all observations up to the present

As opposed to !ltering incorporates “the future”. Leads to smoother
state estimates than !ltering

• Most likely sequence: given a sequence of observations, !nding the 
most likely state sequence to have generated those observations

 Highly relevant e.g. in speech recognition where the aim is to !nd
 the most likely word given a series of sounds
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Examples

• Consider a motion tracking system able to follow human motion 

• Suppose we have two goals:
• Tracking and state estimation: associating single-frame detections (of the hand, the 

human) over time and accurately estimating their position from noisy observations

• Recognizing different movement primitives which may serve later to infer high-level 
activities such as the sign that is presented or the action the human is engaged in

• The former is a continuous, the latter a discrete state estimation problem. 
We will !rst consider the discrete case

So
ur

ce
 [2

]

Interpreting sign language from a sequence of 
images. Hands are detected and tracked

Keeping track of human actions from 
sequences of laser-based positions
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Hidden Markov Models (HMM)

• An HMM is a temporal probabilistic model in which the state of the process 
is described by a single discrete random variable

• The random variable        can take S possible states s 2 {1,...,S}

• The HMM is widely used in speech recognition, natural language 
modeling, human activity recognition, on-line handwriting recognition, 
analysis of protein/DNA sequences, etc.

• Notice the similarity to mixture models where the latent variables are 
also discrete, describing which mixture component is responsible for 
generating the corresponding observation

• Except that here we have that the probability distribution over       depends 
on the state of the previous latent variable            through the transition 
model 
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Transition Model 

• The transition model is represented as a
square matrix A with transition probabilities
Aij  where                          and                         ,
that is, outgoing probabilities sum up to 1 

• A has S(S–1) free parameters

• The state transition diagram is not a graphical model, because the nodes 
are not separate variables but rather states of a single variable 

A12

A23

A31

A21

A32

A13

A11

A22

A33
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k = 3
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Probability of a transition from state 3 to state 2
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Transition Model 

• Unfolded over time, we obtain a lattice (or trellis) diagram

So
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k = 1

k = 2

k = 3

n� 2 n� 1 n n + 1

A11 A11 A11

A33 A33 A33
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s

s

k–2 k–1 k k+1

Time
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Transition Model 

• States in our simple human action recognition example

• Ground truth state sequence:

Start

Ground truth states

Observed labels

Most probable state sequence

0 20 40 60 80 100 120
0

0.5

1
Filtered probabilities

0 20 40 60 80 100 120
0

0.5

1
Smoothed probabilities

straight

straight

right turn

left turn

right turn

Start
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Observation Model

• Observed variables can either be discrete or continuous in HMMs

• They may be of different type and dimensionality than the states

• The observation model                     “maps” the space of observations to 
the space of discrete HMM states. Concretely, for each       it computes a 
probability distribution over the states s 2 {1,...,S} specifying the 
emission probability that state s
caused observation       to appear

• In the continuous case, a parametric
distribution with parameters    , such
as a Gaussian, is typically chosen.
We may also write                          

• We then need a conditional probability
                                  for each state s

k = 1

k = 2

k = 3

0 0.5 1
0

0.5

1

s = 1

s = 2

s = 3
.

So
ur

ce
 [2

]
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Observation Model and Prior

• In the discrete case, the observation model is represented as a matrix E 
of emission probabilities Eij where                           and                        

• Every row of E describes a distribution 

• Let observations be from a !nite set of O symbols. A special case is when 
E is squared, that is, S = O

• Finally, we also have to specify the prior distribution             over states s, 
using, for example, a categorial distribution

Emission probability of symbol 4 from state 3

i  
(s

ta
te

s)

j  (observation symbol)
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Observation Model

• States and observations in our
running example: S = O = 3

• Suppose we have a noisy “sensor” for
movement primitives, for example,
a poorly trained 3-way classi!er

• Ground truth sequence of state

• Sequence of observations 

Ground truth states

Observed labels

Most probable state sequence

0 20 40 60 80 100 120
0

0.5

1
Filtered probabilities

0 20 40 60 80 100 120
0

0.5

1
Smoothed probabilities

Ground truth states

Observed labels

Most probable state sequence

0 20 40 60 80 100 120
0

0.5

1
Filtered probabilities

0 20 40 60 80 100 120
0

0.5

1
Smoothed probabilities

straight

straight

right turn

left turn

right turn

Start
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Inference

• Having set up the representation of an HMM with parameters             ,
                         and                    we recall the four basic inference tasks:

• Filtering: computing the posterior distribution                         over the 
most recent state given all observations to date

• Prediction: computing the posterior distribution over the future
state given all observations to date. Formally,

• Smoothing: computing the posterior distribution over a past state 
given all observations up to the present, i.e. 

• Most likely sequence: given a sequence of observations, !nding the 
most likely state sequence to have generated those observations. 
Formally, 
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Inference: Smoothing

• Let us start with the more general smoothing which contains !ltering 
and prediction as a special case

• We want to compute

• We will see next that the !rst term can be computed in a backward 
recursion and the second term in a forward recursion through the chain

“dividing up the evidence”

backward forward

chain rule

sensor Markov assumption

conditional probability
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Inference: Smoothing

• Computing                      is called forward step

“dividing up the evidence”

chain rule

conditional independence

marginalization
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Inference: Smoothing

• Computing                      is called forward step

We have found a recursion!

“dividing up the evidence”

chain rule

conditional independence

marginalization
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Inference: Smoothing

• All terms in

are known HMM parameters (emission and transition probabilities).
Let the recursive term be           , then we can write 

• How to compute      ? We !nd

Again, this depends only on known parameters (priors/emission probab.)
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Inference: Filtering

• When rewriting the     term using conditional probability

we see that it is equal to the wanted posterior probability for !ltering
(up to normalization)

• Filtering is maintaining an estimate of the current state of a system and 
updating it with new observations

• An important property of a !ltering algorithm is recursiveness where the 
update only depends on the previous estimate and the new observation

(rather than going back over the entire observation history every time)
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Inference: Filtering

• We recall the expression for the forward step using the rewritten     terms

which leads us immediately – after dropping the conditioning on the 
observation history – to an important result: the recursive Bayes !lter

• The Bayes !lter is a general recursive state estimation scheme (in the
continuous case, the sum becomes an integral)

• Many applications in robotics including robot localization, SLAM, tracking

36



Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Hidden Markov Models

Inference: Filtering

• Filtering has a prediction–update scheme

• For this to become evident, we transform the sum on the right hand side

• This represent a one-step prediction of the next state

chain rule

conditional independence

marginalization

conditional probability
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Inference: Filtering

• Filtering has a prediction–update scheme

• Kalman !lter and particle !lter, both continuous (LDS-related) Bayes 
!lter implementations, have explicit prediction and update steps
(see later in this course)

update prediction
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Inference: Filtering

• Back to HMMs, let us look at the forward step

• In !ltering, we compute                                  as

in each step by taking the previous         
values for every state s, summing them up with
weights given by the transition matrix A, and then
multiplying by the observation model for state s,  

• This is called the forward algorithm. We start at the !rst node of the
chain, work along the chain and evaluate       for every latent node

• O(S 2) complexity per update step, O(S 2K) for a chain of length K

k = 1

k = 2

k = 3

n� 1 n

↵(zn�1,1)

↵(zn�1,2)

↵(zn�1,3)

↵(zn,1)
A11

A21

A31

p(xn|zn,1)

s

s

s

t–1 t So
ur

ce
 [2

]
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Inference: Smoothing

• Let us get back to smoothing and the backward term  

• We recall

• As we will see next, the backward term has a very similar derivation
than the forward term

“dividing up the evidence”

backward forward

chain rule

sensor Markov assumption

conditional probability
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Inference: Smoothing

• Computing                              is called backward step

“dividing up the evidence”

chain rule

conditional independence

marginalization
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Inference: Smoothing

• Computing                              is called backward step

Again a recursion, this time in a backward sense!

“dividing up the evidence”

chain rule

conditional independence

marginalization
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Inference: Smoothing

• Again, all terms in

are known HMM parameters (emission and transition probabilities).
Let the recursive term be      , then we write 

• This is valid for                               . But what about       ? Let us consider
the second last step                   
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Inference: Smoothing

• For the second last step,                   , we redo the derivation

• It follows that                 for this derivation to hold

chain rule

conditional independence

marginalization
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Inference: Smoothing

• Let us look at the backward step

• We compute                                       as

in each step by taking the future            
values for every state s, multiplying the
corresponding elements of A and observation
model for state s,                                     , and summing up

• This is called the backward algorithm. We start at the last node of the 
chain, work backwards, and evaluate      for every latent node

• O(S 2) complexity for an update step, O(S 2K) for a chain of length K

k = 1

k = 2

k = 3

n n + 1

�(zn,1) �(zn+1,1)

�(zn+1,2)

�(zn+1,3)

A11

A12

A13

p(xn|zn+1,1)

p(xn|zn+1,2)

p(xn|zn+1,3)

s

s

s

t+1t
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Inference: Smoothing

• Let us wrap up: in our derivation we have found the forward algorithm 
and the backward algorithm to compute the two individual terms of

• The      term is computed by !ltering, running forward in time from
1 to t, the     term is computed by running backward in time from
k down to t+1

• The smoothing result is !nally obtained by multiplication and 
normalization of the terms. The corresponding algorithm is the 
forward-backward algorithm

backward forward
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Inference: Smoothing

• The forward-backward algorithm for smoothing 

Algorithm: Forward-Backward Algorithm
In: z, vector of observations

prior , prior distribution on initial state p(x0)
Out: x, vector of smoothed probability distributions
Local: f , vector of forward probabilities

b, vector of backward probabilities, initially all 1

f [0] prior

for t = 1 . . . k do
f [t] ↵t(f [t� 1], z[t])

end
for t = k . . . 1 do

x[t] normalize(f [t]⇥ b)
b �t(b, z[t])

end
return x

9

smoothing

"ltering
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Inference: Smoothing

• The forward-backward algorithm forms the computational backbone for 
many applications that deal with sequences of noisy observations

• An important drawback of the algorithm is that it does not work in an
online setting where smoothed estimates are required as new 
observations are continuously added to the end of the sequence

• A procedure of this form is !xed-lag smoothing which requires 
computing the smoothed estimated                               

for !xed d. That is, smoothing is done for the time index d steps behind
the current time t

• Efficient !xed-lag smoothing algorithms with constant time updates
exist
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Inference: Filtering Example

• Let us illustrate !ltering and smoothing in the basic umbrella example

• On day 0, we have no observation, only the security guard’s prior beliefs. 
Let us assume uniformity, that is, 

So
ur

ce
 [1

]

Raint

Umbrellat

Raint–1

Umbrellat–1

Raint+1

Umbrellat+1

Rt -1 tP(R )

0.3f
0.7t

tR tP(U  )
0.9t
0.2f

Rain0 . . .

Transition 
model

Observation 
model

Prior
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Inference: Filtering Example

• Day 1: U1 = true, the umbrella appears

• The prediction from k = 0 to k = 1 is

• Then the update step simply multiplies by the probability of the 
observation for k = 1 and normalizes
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Inference: Filtering Example

• Day 2: U2 = true, umbrella appears again

• The prediction from k = 1 to k = 2 is

• The update step for k = 2 is

51



Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Hidden Markov Models

Inference: Filtering Example

• Day 2: U2 = true, umbrella appears again

• The prediction from k = 1 to k = 2 is

• The update step for k = 2 is Increases because 
rain persists
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Inference: Smoothing Example

• Let us compute the smoothed estimate for day 1, given the umbrella 
observations for day 1 and day 2:  U1 = true, U2 = true

• The !rst term is known from the !ltering pass, the second term can be  
computed by applying the backward recursion

• Plugging this back in yields the smoothed estimate
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Inference: Smoothing Example

• Let us compute the smoothed estimate for day 1, given the umbrella 
observations for day 1 and day 2:  U1 = true, U2 = true

• The !rst term is known from the !ltering pass, the second term can be  
computed by applying the backward recursion

• Plugging this back in yields the smoothed estimate

Higher than "ltering for k = 1
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Inference: Filtering Example

• In our simple human action recognition example, the sequence of 
observations is

• Let us assume the following HMM parameters

• The !ltered probabilities are

Ground truth states

Observed labels

Most probable state sequence

0 20 40 60 80 100 120
0

0.5

1
Filtered probabilities

0 20 40 60 80 100 120
0

0.5

1
Smoothed probabilities

Ground truth states

Observed labels

Most probable state sequence

0 20 40 60 80 100 120
0

0.5

1
Filtered probabilities

0 20 40 60 80 100 120
0

0.5

1
Smoothed probabilities
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Inference: Smoothing Example

• In our simple human action recognition example, the sequence of 
observations is

• Let us assume the following HMM parameters

• The smoothed probabilities are

Ground truth states

Observed labels

Most probable state sequence

0 20 40 60 80 100 120
0

0.5

1
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Inference: Smoothing Example

• In our simple human action recognition example, the sequence of 
observations is

• Let us assume the following HMM parameters

• The smoothed probabilities are
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Smoothing provides much better state estimates! 
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Inference: Prediction

• The task of prediction can be seen as !ltering without new evidence

• The !ltering process already incorporates a one-step prediction. A 
general prediction of the state at time t + i + 1 from a prediction for t + i 
(with evidence only up to time t) is

• Of course, this computation only involves the transition model, not the 
observation model

• Predicting further and further into the future makes the predicted 
distribution converge towards a stationary distribution, which is only 
determined by the transition matrix regardless the starting state

58



Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Hidden Markov Models

Inference: Prediction

• Original transition model

• Different priors
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Inference: Prediction

• Uncertain second state

• The more uncertain (less peaked) a row distribution                                 in A
is, the less likely it is to converge to state s in the stationary distribution

• The mixing time is the time it takes for the Markov process to converge

• The more uncertainty there is in the transition model (e.g. many nearly 
uniform row distributions), the shorter will be the mixing time and the 
more the future is obscured (stationary distribution nearly uniform)
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Inference: Most Likely Sequence

• Given a sequence of observations, we want to !nd the most likely state 
sequence to have generated those observations

• Applications of this inference task include (among many others) speech 
recognition or handwriting recognition where we seek to !nd a word 
from a noisy sequence of recognized phonemes or letters
• Phonemes or letters are typically obtained by probabilistic classi"cation based on 

features that characterize portions of the original signal (e.g. small time frames)
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Inference: Most Likely Sequence

• For example, suppose the security guard observes the umbrella 
sequence {true, true, false, true, true}. What is the weather sequence 
most likely to explain this?
• Does the absence of the umbrella on day 3 mean that it was not raining,

or did the director forget to bring it?

• If it didn’t rain on day 3, perhaps – as weather tends to persist – it did not
rain on day 4 either but the director brought it just in case. And so on...

• In all, there are 25 possible weather sequences. Is there a smart way to
!nd the most likely, better than enumerating all of them? 

• What about taking the smoothing result and choose the state with the 
highest posterior probability? Not a good idea! Because those 
probabilities are distributions over single time steps. To !nd the most 
likely sequence we must consider joint probabilities over all time steps
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Inference: Most Likely Sequence

• Let us view each sequence as a path through the trellis diagram 

• Recall, we want to !nd the state sequence       that maximizes the 
probability along its path, i.e.
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Inference: Most Likely Sequence

• Let us consider the second last step of a sequence of length k and see
if we get an idea for an algorithm by induction

• Assume we already have the maximizing paths for time k–1

• Can we reuse the results computed so far when extending the paths to 
time k? 
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k–3 k–2 k–1 k

. . .

. . .

. . .

k–4

best path for xk–1 = 1

best path for xk–1 = 3

best path for xk–1 = 2
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Inference: Most Likely Sequence

• This would be the case if we were able to simply append the most likely 
path from time k–1 to time k to the computed ones, limiting the focus of 
our maximization onto a single transition

• In other words: if there were a recursive relationship between most likely 
paths to each state in       and most likely paths to each state in
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Inference: Most Likely Sequence

• Let us !rst consider the maximum

instead of the                                                     , and see if we can later recover 
the state sequence from the maximum

• And consider the following useful relationship: given two nonnegative 
functions

• This can be veri!ed by !rst ignoring the maximization over a making f(a) a 
constant. Thus, we can “pull” the maximization over b into the product
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Inference: Most Likely Sequence

• Developing the maximization term

pulling in the max

chain rule
conditional independence

conditional probability
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Inference: Most Likely Sequence

• Developing the maximization term

pulling in the max

chain rule
conditional independence

conditional probability

A recursion!
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Inference: Most Likely Sequence

• Summarizing

• Let                                                        , we have

• This result is very similar to the !ltering equation

where the summation over     is replaced by the maximization over
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Inference: Most Likely Sequence

• Thus, the algorithm for computing the most likely sequence is similar to 
!ltering: it runs forward along the sequence and computes     at each
time step

• At the end, it will have the probability for the most likely sequence 
reaching each of the !nal states 

• We also require the initial state

which only depends on known HMM parameters

• This procedure computes the probability of the most likely sequence. The 
sought state sequence,     , is obtained by storing pointers that, for each 
state, record the best state that leads to it. Finally,       is obtained through 
backtracking
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Inference: Most Likely Sequence

• The algorithm computes
                                                  as

in each step by maximizing over the previous
         values for every state s, weighted by the
transition matrix A, and then multiplying by the observation model for 
state s,  

• This is called the Viterbi algorithm after its inventor

• Like the !ltering algorithm, its time complexity is also linear in the
length of the sequence
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Inference: Most Likely Sequence Example

• Let us illustrate the Viterbi algorithm in our umbrella example

• Values of          which give the probability of the best sequence reaching 
each state at time k are shown in the boxes

• Bold arrows indicate a state’s best predecessor as measured by the 
product of the preceding          probability and the transition probability

• Following the bold arrows back from the most likely state in       gives the 
most likely sequence
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Inference: Most Likely Sequence Example

• In our simple human action recognition example, the sequence of 
observations is

• The smoothed probabilities

• The most likely sequence

• The ground truth
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Summary

• Temporal reasoning deals with the representation, inference and 
learning of and with sequential data

• The state space model describes systems that evolve on their own, with 
observations of it occurring in a separate process

• State space models possess three parameters: the transition model, the 
observation model, and the prior distribution

• An HMM is a temporal probabilistic model in which the state of the 
process is described by a single discrete random variable

• HMM is a very popular method and widely used in speech recognition, 
natural language modeling, human activity recognition, on-line 
handwriting recognition, analysis of protein/DNA sequences, etc.

• Many extensions of the basic HMM exist
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Summary

• We have considered four inference tasks: !ltering, smoothing, prediction, 
and most likely sequence
• Filtering is done with the forward algorithm

• Smoothing is done with the forward-backward algorithm

• Prediction is like !ltering without new evidence

• Computing the most likely sequence is done with the Viterbi algorithm

• They are all linear-time algorithms

• Smoothing provides better state estimates than !ltering due to its 
incorporation of the “future”
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