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Abstract— Robots accompanying humans is one of the core
capacities every service robot deployed in urban settings should
have. We present a novel robot companion approach based on
the so-called Social Force Model (SFM). A new model of robot-
person interaction is obtained using the SFM which is suited for
our robots Tibi and Dabo. Additionally, we propose an interac-
tive scheme for robot’s human-awareness navigation using the
SFM and prediction information. Moreover, we present a new
metric to evaluate the robot companion performance based on
vital spaces and comfortableness criteria. Also, a multimodal
human feedback is proposed to enhance the behavior of the
system. The validation of the model is accomplished throughout
an extensive set of simulations and real-life experiments.

I. INTRODUCTION

Nowadays, robots interact naturally with people and their

environment. Thus, urban robots require some tools in order

to successfully serve their purpose of being useful to people.

The robot companion is a basic tool every urban robot should

have, and it responds the basic necessity of accompany

people in a safety and natural way, see Fig. 1.

In recent years, an increasing area of interest is the devel-

opment of autonomous companion robots [1]. Researchers

are making efforts on performing human-robot interaction in

a more natural way. A robot companion should detect the

human operator and conduct his/her commands [2].

Research into human-robot interaction in the field of

companion robots is still new in comparison to traditional

service robotics, such as robots serving food in hospitals or

providing specific security services. Therefore, prior research

in this particular field is relatively minimal [3]. Most of the

current research predominantly studies robots that participate

in social-human interactions as companions [4]. Further

research shown that there are other mediating factors, which

can impact this preference, such as a persons experience with

robots [5], gender [6] or in which part of the room she was

standing or sitting [7].

Robot companion is a multidisciplinary field of robotics in

which intervenes a mixture of subjects such as perception,

robot navigation and human robot interaction. Despite the

heterogeneity of the subjects treated, the problem can not be

tackled independently but in a holistic way, which is not an

easy endeavor.
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Fig. 1. Tibi accompanies a person. Left: Person being accompanied by
Tibi in an urban area. Right: The same scene using the system interface.

In the present paper, we use the Social Force Model (SFM)

introduced by Helbing [8] to model the social interactions,

more concretely we obtain a robot-person interaction force

parameters specifically suited for Tibi robot [9]. To the best

of the authors’ knowledge, no other work describes robot-

person interactions using the SFM.

We go deeper into the development of the SFM for

robot interactions. This work presents a powerful scheme

for robot’s human-awareness navigation based on the social-

forces concept. A social aware navigation is well suited for a

robot companion task. To this end, additional considerations

are required to make the system work properly, such as

prediction information and a learning stage.

Moreover, we introduce a new metric to evaluate in general

the robot companion performance, based on vital spaces and

comfortableness criteria. Since the verification of man-in-the-

loop systems is fuzzy, we require an analytical metric that

justifies the behavior of our robot companion approach.

In addition, we present a model of human feedback

response of the behavior of the system. Given the uncertainty

associated to this problem, we believe that the interaction

system can enhance the accuracy of the robot companion

approach: the interaction can be achieved by showing the

robot a better companion behavior, while simultaneously,

the human can feedback the system to improve the robot

performance. The validation of the model is accomplished

throughout an extensive set of simulations and real-life

experiments.

In the remainder of the paper we start by introducing the

theory of the social force model. Section III briefly describes

the human motion predictor. Section IV presents robot’s

human-aware navigation and a novel metric to evaluate the
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performance to accompany a person. Results and conclusions

are presented in sections V and VI, respectively.

II. SOCIAL-FORCE MODEL

In order to achieve a model capable of represent the

interactions between a pedestrian and a robot, we were

inspired by works of Helbing [8] and Zanlungo [10]. Their

main contribution is the following idea: changes in behavior

(trajectory) can be explained in terms of social fields or

forces. However, the cited works do not consider the in-

teraction between a person and a robot, which is one of the

contributions of the present work.

Formally, the social forces model assumes that a pedestrian

pi with mass mi tries to move at a certain desired speed v0i in

a desired direction ei, i.e., with desired velocity v0i = v0i ei.

Hence, the basic equation of motion for a pedestrian is

given by a social force term:
d vi(t)

dt
mi = Fi(t) (1)

and describes the movements of the pedestrian pi over time.

For the sake of simplicity, we will value mi as the unity for

all the persons considered.

A person wants to keep his/her desired velocity through

the steering force, f
goal
i , but is also influenced by other

pedestrians pj , f int
i,j , by obstacles, f int

i,o and, in the present

study we model the robot interaction f int
i,r . The resulting

force Fi governs the trajectory described by the target pi.

Fi = f
goal
i + F int

i (2)

Below, the description of each component of Fi is pre-

sented. Assuming that pedestrian tries to adapt his or her

velocity within a relaxation time k−1, f
goal
i is given by:

f
goal
i = k( v0i − vi) (3)

Furthermore, repulsive effects from the influences of other

people, obstacles and robot in the environment are described

by an interaction force F int
i . This force prevents humans

from walking along their intended direction, moreover, it

is modeled as a summation of forces either introduced by

people pi, by static obstacles in the environment o or the

robot r.

Fint
i =

∑

j∈P

f int
i,j +

∑

o∈O

f int
i,o + f int

i,r (4)

where, P is the set of people moving in the environment

where the human interacts and O is the set of obstacles.

These forces are modeled as:

finti,q = Aqe
(dq−di,q)/Bq

di,q

di,q
(5)

here, q ∈ P ∪ O ∪ {r} is either a person, an object of the

environment or the robot. Aq and Bq denote respectively

the strength and range of interaction force, dq is the sum

of the radii of a pedestrian and an entity and di,q ≡ ri −
rq . In order to calculate the Euclidean distance between pi

and the entity q, humans and objects are assumed to be of

circular shape with radii ri and rq . The parameters Aq, Bq, dq
are deffined depending on the nature of the object. In this

paper we obtain the parameters describing the robot-person

interaction since, to the authors’ knowledge, these parameters

had not been obtained before.

Given the limited field of view of humans, influences

might not be isotropic. This is formally expressed by scaling

the interaction forces with an anisotropic factor depending

on ϕp,q between vi and di,q

w(ϕi,q) =

(

λ+ (1− λ)
1 + cos(ϕi,q)

2

)

(6)

where λ defines the strength of the anisotropic factor,

cos(ϕi,q) = −ni,q · er (7)

The term ni,q is the normalized vector pointing from q to

person pi which describes the direction of the force.

A. Parameters Learning

We consider three kinds of interaction forces: person-

person, person-obstacle and person-robot. The first and the

second interactions has been studied in previous papers like

[8], [10]. However, the person-robot interaction parameters

were not directly obtained in any previous work, thereby,

in this section we present a learning method to obtain the

parameters {Apr, Bpr, λpr, dpr}.

We decouple the training in two steps: firstly, we optimize

the intrinsic parameters of the model forces {k} describing

the expected human trajectories under no external constrains.

Secondly, we optimize the extrinsic parameters of the force

interaction model {Apr, Bpr, λpr, dpr} under the presence

of a moving robot, making sure it is the only external

force altering the outcome of the described trajectory. All

optimizations used to learn the model forces parameters

are carried out using genetic optimization algorithms [11]

minimizing the following error function throughout all N
training trajectories:

{A,B, λ, d} = arg min
{A,B,λ,d}

{

∑

N

∑

time

‖xo(t)− xe(t)‖

}

(8)

where xo is the person’s observed position and xe is the

value expected after propagating accordingly to Fi.

III. PEOPLE PREDICTION

We require a model capable of forecasting the set of trajec-

tories that any person might describe at any time, specifically

in urban settings. As we are using the social forces model

proposed by Helbing [8], we require information regarding

the final destination a person aims to, that is, a long-term

intentionality prediction method.

In order to predict to which destination the target is aiming

to, we have used a geometrical approach in which a Bayesian

predictor calculates the person posteriori probabilities to

reach all destinations in the scene. The problem is treated as

a sequential data classification, where orientation information

with respect to each destination is required to infer the most

expectable goal, making use of a variant of the Sliding

Window approach.

Therefore, we can obtain a motion propagation to all

destinations in the scene and the probability to occur of

each future trajectory. This information is useful, specially

combined with the SFM, which requires destinations, that is,

1689



long term intentionality predictions, in order to calculate the

driven forces to a final goal. For a more detailed discussion

on the prediction issue, see [12].

IV. HUMAN-AWARENESS NAVIGATION

The requirements for a social navigation system consid-

ered in this paper are: a general social interaction model

based on the SFM (Sec. II), a pedestrian detector system and

a prediction algorithm to estimate the best suited destination

a persons aims to. These independent topics are aggregated

to build a unified navigation framework, using the following

idea: the robot is considered as a social agent moving

naturally in human environments accordingly to the Social-

Force Model, and thus, aiming to a destination and reacting

to obstacles and persons. Furthermore, we believe that a

more humanized navigation, in the sense that the robot

responds to the SFM, will highly increase the acceptance

over pedestrians, due to the similarities between the robot

behavior and the expected behavior of another pedestrian.

To this end, we propose a novel approach to the robot nav-

igation issue called human-awareness navigation, understood

as an instantaneous reaction to sensory information, driven

by the social-forces centered at the robot. More precisely,

we aim to obtain a short-term goal-driven robot navigation

ruled by the SFM. In addition, we make use of the SFM

framework to successfully accompany a person while safely

navigating in a crowded environment, avoiding either static

and dynamical objects.

Thereby, it is mandatory to clearly formulate all the

social-forces (Sec. II) intervening in the human-awareness

navigation approach. The following equations are straight-

forward derivations of the eqs. 2-6. The force to the target’s

destination is inferred by using the intentionality prediction,

and thus the robot aims to the target’s most expectable

destination:

f
goal
r,dest = kr( v0r − vr) (9)

The forces of interaction due to pedestrians are the repul-

sive forces each person generates to the robot, as follows:

F per
r =

∑

j∈P

f int
r,j (10)

where the forces f int
r,j represent the interaction between

the pedestrian j and the robot:

f int
r,j = Arpe

(drp−dr,j)/Brpw(ϕr,j , λrp) (11)

which is the formulation of the spherical force (Eq. 5)

using the parameters {Apr, Bpr, λpr, dpr}. These parameters

correspond to the person-to-robot interaction, and in general

are dependent of the robotic platform used.

Correspondingly, the interaction between robot and obsta-

cles is modelled as:

F obs
r =

∑

o∈O

f int
r,o (12)

where f int
r,o is obtained following

f int
r,o = Aroe

(dro−dr,o)/Brow(ϕr,o, λro) (13)

Fig. 2. Robot’s Social Forces: Forces applied to the robot while
accompanies a person.

using the specific parameters {Aro, Bro, λro, dro} corre-

sponding to the interaction person-obstacle.

As can be seen in Fig. 2, we have defined an additional

destination to the robot approach. The robot aims to the target

person in order to accompany him/her, following the Eq. 9.

Similarly as presented in section II, repulsive effects

from the influences of other people and obstacles in the

environment are described by an interaction force which is

a sum of forces either introduced by people or by static

obstacles in the environment.

In contrast to the social-force model, two different goals

appear. Firstly, a force makes the robot drive towards the

predicted destination f
goal
r,dest. Furthermore, the robot must

approach the person who accompanies, and hence a second

goal pushes the robot to move closer to the person pi, f
goal
r,i .

The trade off of these forces in addition to the interacting

forces, describes the resultant force governing the robot

movement:

Fr = α f
goal
r,dest + β f

goal
r,i + γ F per

r + δ F obs
r (14)

Once obtained the reactive force action, the system be-

haves consequently to these stimuli and propagates linearly

its position and velocity according to this force value.

The most interesting part of the system so far, resides

in the fact that the approach proposed does not require

static targets, the robot is able to navigate near to moving

persons. Moreover, it can accompany those people who aim

to the same destination. The following section discusses the

procedure to obtain the value of the parameters {α, β, γ, δ}
and how they are updated.

A. Interactive Learning

In order to learn the values of the introduced parameters

{α, β, γ, δ}, we use an Interactive Learning scheme [13]

under the shape of the person’s response to the stimuli gener-

ated by the robot. This method helps to enlighten the nature

of the model, in addition to generate controlled interaction

forces that otherwise would be extremely complicated to

generate.

The on-line feedback comes from the target person to

whom the robot tries to approach. The interaction provided

by a human agent by using a wii remote control has been

defined. Here, we expect to receive a feedback measure of the

subjective comfortableness of the target being approached.
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This feedback is a subjective measure, nevertheless, we

have modeled a system weighting the contribution of all

active forces. Volunteers had a wii remote control. Partic-

ipants were told to press the button ‘+’ if they wanted the

robot to get closer to them. However, if people preferred

the robot to move directly to the destination, they should

push button ‘-’. Below, parameters’ variations depending on

people’s feedback are presented.

Firstly, we can define the function N(T ) as follows:

N(T ) =

T
∑

t=0

ǫ(t) (15)

where ǫ(t) is expressed as:

ǫ(t) =

{

+1 if human presses button ‘+’ at time t

−1 if human presses button ‘-’ at time t
(16)

N(T ) is the difference between the number of times the

person presses button ‘+’ and button ‘-’ at time T . Then,

N(T ) ≥ 0, if N(T ) < 0 we impose N(T ) = 0.

Secondly, the forces that appear during the process of

accompanying vary according to the distance between the

robot and the person. Then, the variation of the parameters

will change depending on such distance.

Formally, if h(N(T )) denotes the function corresponding

to human’s response, it can be expressed as:

h(N(T )) =

{

α(N(T )), β(N(T )) if dr,i ≥ w(ϕr,i)
γ(N(T )), δ(N(T )) if dr,i < w(ϕr,i)

(17)
Where, {α(N(T )), β(N(T )), γ(N(T )), δ(N(T ))} is the

set of weighting functions for the parameters {α, β, γ, δ},

dr,i is the distance between the robot and the person, and,

w(ϕr,i) represents the personal space of a person, see eq. 6.

Below, the weighting functions are presented.

Force to the target destination α: We infer the destination

of the target by using the intentionality prediction described

in section III, and thus the robot aims to the most expectable

target’s destination . As it has been described above, a

parameter α controls the magnitude of the force f
goal
r,dest. The

value of this parameter is computed as follows:

α(N(T )) = log(1 +N(T )/4) (18)

Force to the person being accompanied β: An attractive

force towards the accompanied person has been described.

Either the current target position as well the expected motion

prediction are known. The parameter β controls the mag-

nitude of the force f
goal
r,i . The value of this parameter is

computed as follows:

β(N(T )) = log(1 +N(T )) (19)

Force of interaction with people γ: A repulsive force

due to the relative position and velocity between the robot

and people must be considered,
∑

j∈P
f int
r,j , this force is

controlled by the parameter γ. The value of γ is defined as:

γ(N(T )) = ln(1 +N(T )/2) (20)

Force of interaction with obstacles δ: Finally, a repulsive

force due to the relative position and velocity between the
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Fig. 3. Quantitative Metrics: Diagram of the areas used in the evaluation
of the robot’s performance.

robot and obstacles has to be considered,
∑

o∈O
f int
r,o , this

force is controlled by the parameter γ. The value of γ has

been computed under simulation.

The combination of these four forces determines the

behavior of the robot while physically approaching a person.

The feedback provided refines the weights of the force

parameters and we can infer an interactive behavior where

the person feels comfortable under the presence of the robot.

B. Quantitative Metrics

To evaluate the performance of the task accomplished by

the robot, a quantitative metric is defined. This assessment is

based on “proxemics”, proposed in [14]. This work considers

the following taxonomy of distances between people:

- Intimate distance: the presence of another person is

unmistakable (0-45cm).

- Personal distance: comfortable spacing (45cm-1.22m).

- Social distance: limited involvement (1.22m-3m).

- Public distance: outside circle of involvement (> 3m).

To define the metric used in the present work, three

different areas must be defined: (i) Human’s vital space C,

robot’s navigation has to be socially accepted by the person

being accompanied, it is necessary that the robot does not

perturb the human’s vital space, eq. 21. (ii) Social distance

area A, robots must be allocated in an acceptance social

distance. (iii) Finally, the robot should be in the human’s

field of view as they interact during the performance of the

task B.

A =
{

x ∈ R
2 \ (B ∪ C) | d(x, pi) < 3

}

B =
{

x ∈ R
2 \ C | d(x, pi) < 3w(ϕpi,r)

}

C =
{

x ∈ R
2 | d(x, pi) < w(ϕpi,r)

}

(21)

where w(ϕpi,r) is defined in eq. 6.

Moreover, robot can be represented as a circle of 1 meter

of diameter, with center robot’s position r, R = {x ∈
R

2 | d(x, r) < 0.5}, whose area is |R| = π
4 .

Thus, we can now define the performance of the task

accomplished by the robot, depending on human’s position

pi and robot’s position r.

P(r, pi) =
1

|R|

∫

B∩R

dx+
1

2|R|

∫

A∩R

dx ∈ [0, 1] (22)
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The function presented has the maximum performance in

the area described by B, since it is the area of human’s field

of view and where the interaction between the robot and

the human is maximal. Additionally, the area A, is a partial

success, since this area is less tolerable by humans. Finally,

in the area described further than three meters there is no

interaction, and therefore its performance is zero.

V. EXPERIMENTS

In previous sections, we have presented the theoretical

aspects of a wide variety of topics, including a social force

model (SFM), a long-term predictor of motion intentionality

and a human-awareness navigation. Additionally, we have

discussed how these independent topics can be unified into

the same robot companion framework.

A. Robotic Platform, Environment and Implementation

To conduct the experiments and to test the approach

presented, we have used two twin mobile service robots,

called Tibi and Dabo (Fig. 6-top), designed to work in urban

pedestrian areas and interact with people [1].

The experimental areas where the experiments were con-

ducted are the Barcelona Robot Lab (BRL), and the Facultat

de Matemàtiques i Estadı́stica (FME). Both are outdoor

urban environments covering over 10.000 m2, with multiple

ramps, stairs and obstacles such as bicycle stands, trashcans

or flower pots.

We are using a probabilistic localization, an implementa-

tion of the adaptive (or KLD-sampling) Monte Carlo local-

ization approach, which uses a particle filter to track the pose

of a robot against a known map [15]. Our implementation

of the people detector is fundamentally based on laser

information ([16]). This approach uses a boosting method to

classify if a group of laser points is a human being. And the

final requirement is a people tracking, which implementation

follows a similar approach of the work presented in [17].

B. SFM parameters

The first step required for the robot companion is the

study of the SFM that governs human motion in general.

We consider three kinds of interaction forces: person-person,

person-obstacle and person-robot. The first and the second

interactions have been studied in previous papers like [8],

[10] and [18]. However, the person-robot interaction pa-

rameters were not directly obtained in any previous work,

thereby, in this section we present the results obtained for

the parameters {Apr, Bpr, λpr, dpr}.

As discussed in Sec. II-A, we have recorded two different

databases of human motion in a real scenario. During the

first part, we optimize the intrinsic parameter of the SFM {k}
describing the expected human trajectories under no external

constrains.

The second part of the SFM parameter learning was

done under the influence of the Tibi robot. We optimize

the extrinsic parameters of the force interaction model

{Ar, Br, λr, dr} under the presence of a moving robot,

making sure it is the only external force altering the outcome

of trajectory described by the person.

TABLE I

Interaction k A B d λ

Per-Per [18] 2 1.25 0.1 0.2 0.5

Per-Per [10] 4.9 10 0.34 0.16 1

Robot-Per 2.3 2.66 0.79 0.4 0.59
(our approach) (± 0.37) (± 4.51) (± 0.21) (± 0.25) (± 0.36)

Model Forces Parameters. Parameters learned after applying
the minimization process.
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Fig. 4. Force parameters α, β, γ: Evolution in time from start to end
of each experiment. These variables are averaged using the different results
each of the participants chose during the experiment.

Table I shows the parameters learned after applying the

minimization process (see Sec. II-A), using genetic algo-

rithms, to all database trajectories. Each parameter include

a standard deviation obtained after estimating each trajec-

tory independently. In the same table, it can be seen the

parameters proposed by Luber [18] and Zanlungo [10] works

refered to the person-person SFM. However, in the present

work, we are applying the SFM to learn the parameters for a

human-robot interaction, opposite to [10], [18]. Furthermore,

the standard deviation of some parameters is high, because

people behave differently when they interact with robots.

C. α, β, γ and δ parameters

Once obtained the parameters of the SFM person-robot,

we are prepared to obtain the parameters {α, β, γ, δ}. The

experiment setting, using a robot in a real scenario (FME),

is as follows: we explain each volunteer to naturally walk

towards its chosen destination, among two options. While

approaching the desired destination, the robot will accom-

pany the volunteers and they should behave naturally.

As part of the second learning phase, the system learns

the desired robot behavior as explained in Sec. IV-A. The

purpose of the provided feedback is to learn a general

approaching rule that defines a better robot behavior. It is

provided directly by the target agent to be approached using a

remote control, in this way the system automatically weights

the contribution of the active forces, Sec. IV-A.

Fig. 4 shows the {α, β, γ} obtained from the user feedback

that determines the robot behavior. It has been averaged using

25 different experiments and it is depicted as a function

of time, normalized from the start of the experiment to its

ending t ∈ [0, 1].

D. Simulations

In order to evaluate mathematically the correctness of the

reactive navigation model, and the performance of the robot

companion approach, we have built a simulated social envi-

ronment. This simulated environment serves two purposes:

firstly it permits a readjustment of the γ and δ parameters, as
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Fig. 5. Synthetic Experiments. Top: Unconstrained area. Bottom: Urban settings corresponding to the Barcelona Robot Lab. The second column
corresponds to the performance presented previously; black the proxemics approach, green the SFM companion and red the SFM with prediction information.
All results are function of the pedestrian density in the environment. The third column are bar diagrams showing the rate of successful robot arrivals.

the system was not tested in highly crowded environments.

Secondly, the simulated environment allows us to validate

the performance of the approach, using the metrics defined

in Sec. IV-B, in different environments and under different

density of pedestrians.

To this end, we have implemented a complete social

environment, depicted in the left column in Fig. 5, which

takes into account pedestrians, obstacles and robots in an in-

teractive way and each element is reactive to its surrounding

according to the SFM. By doing this, we can get a dynamical

environment, in which each action of the robot alters the

behavior of nearby pedestrians and vice versa.

To validate the performance of our contributions, we have

prepared a set of simulations. Our method makes use of the

SFM of surrounding persons and obstacles while approach-

ing the target and additionally uses prediction information

regarding the target destination to enhance its performance

(red in figure). A second configuration takes into account

only the SFM model (green in figure). For this reason,

the avoidance of moving targets and obstacles is executed

dynamically using the interaction forces in addition to the

goal force. Our method is compared to a robot companion

based on proxemics where the robot follows the target

person, not considering the force of interactions of other

persons. When some person enter the robot inner safety zone,

the robot stops until the path is clear (black lines in Fig. 5).

The experiment settings have been tested in two different

scenarios, as can be seen in the left column in Fig. 5, the

first setting is an unconstrained area, free of obstacles, where

four destinations are defined. The second is a urban settings,

in which obstacles are present as well as pedestrians.

For each environment, the algorithms have been tested

depending on the density of persons in the unoccupied area.

To give statistical consistency to the results, more than 50k

experiments have been carried out, only varying the initial

conditions, which is the initial position of each pedestrian

in the scene and the destination they are aiming to. This

conditions are calculated randomly and the robot has to

accompany a person under this uncertain environment. We

would like to stress on the fact that the environment has a

high density of persons and each person aims to a random

destination. This generates rapidly a chaotic and challenging

environment for the robot companion testing (see video at

the project web).

Under this circumstances, we can test the stability of the

method, that is, if the robot can reach the goal independently

of the initial conditions and the environment condition, such

as the deployment of external agents or obstacles. We have

observed that most of the times, the robot or person escapes

local minima thanks to the surrounding interactions and the

constant steering force towards a destination.

The second column of Fig. 5 shows the overall perfor-

mance of the different methods with respect to the den-

sity of pedestrians in the scene. As expected, using social

interaction forces highly increases the performance, it is

natural to suppose that a more awareness robot navigation

would help to improve its efficiency. The predictive behavior

clearly enhances the performance of the task, either in the

unconstrained scenario or in the urban environment.

The third column of Fig. 5 shows an average percentage

of successful arrivals to the destinations, that is, if the robot

is within the companion zone (Sec. IV-B) at the moment the

target achieves its destination.

E. Real experiments

Nowadays, real experimentation is mandatory in order to

evaluate a robot model, independently on how many simula-

tions have been carried out. The proposed robot companion

approach, has been tested in the FME and in the Barcelona

Robot Lab.

We carried out 60 experiments with different volunteers.

The robot was able to achieve its goal (the target’s goal)
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Fig. 6. Real-life experiments: Some examples of the conducted real experiments. Top: Dabo accompanying a person to a desired goal. Bottom: The
same scene using the system interface.
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Fig. 7. Trajectories and Performance: Left: Trajectories of the robot and
the volunteer. Right: Performance obtained during the experiment

in all conducted experiments. The volunteers were told to

naturally walk and the robot accompanied the target using the

human-awareness navigation described in Sec. IV. During

the validation of the model in real experiments, we set

unexpected obstacles and pedestrians in the targets path, and

the robot avoided them successfully.

The performance of a robot companion experiment, and

the trajectories of the robot and the volunteers for that

experiment are shown in Fig. 7.

We would like to point the reader to check all the videos of

synthetic and real experiments on following link http://www.

iri.upc.edu/groups/lrobots/robot_companion/iros2013.php

VI. CONCLUSIONS AND FUTURE WORK

We have presented a novel robot companion approach

based on the so called Social-Forces Model. The major

contributions of this paper are threefold. First, we obtain

the force parameters of robot-person interaction, specifically

suited for Tibi. We have gone one step ahead into the

development of the SFM for robot interactions, we presented

a powerful scheme for robot’s human-awareness navigation

based on the social-forces concept. A social aware navi-

gation is well suited for a robot companion task, a better

performance has been demonstrated if human interactions are

taken into account and intentionality prediction information

is used, specially in open spaces.

Second, the metric is also a contribution of the paper, since

the verification of any system in which a human intervenes

is hard to evaluate, and thus, we require an analytical metric

that justifies the behavior of our robot companion approach.

Finally, we have introduced a model of human feedback

that is able to obtain the set of weighting parameters for the

robot companion behavior. We believe that human feedback

for parameter learning is a key point for the development

of robots whose purpose is interacting with people. The

validation of the model has been demonstrated throughout

an extensive set of simulations and real-life experiments in

a urban area.

In future work, we aim to obtain more sophisticated robot

behavior, by exploring the enhancement of the model of the

human motion prediction.
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