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Abstract— This paper presents a novel framework for in-
tegrating fundamental tasks in robotic navigation through
a statistical inference procedure. A probabilistic model that
jointly reasons about scan-matching, moving object detection
and their motion estimation is developed. Scan-matching and
moving object detection are two important problems for full
autonomy of robotic systems in complex dynamic environments.
Popular techniques for solving these problems usually address
each task in turn disregarding important dependencies. The
model developed here jointly reasons about these tasks by
performing inference in a probabilistic graphical model. It
allows different but related problems to be expressed in a single
framework. The experiments demonstrate that jointly reasoning
results in better estimates for both tasks compared to solving
the tasks individually.

I. INTRODUCTION

Deployment of robotic systems in complex environments,

such as the DARPA Grand Challenge, requires robust tech-

niques for localisation and mapping. Accurate position es-

timation is one of the primary requirements for achiev-

ing robust operation. Additionally, urban environments are

characterised by the existence of dynamic objects such as

vehicles or people, whose detection and motion estimation is

crucial for safety. These localisation, detection and tracking

problems can be formulated as two well-known tasks in

robotics: 1) data association for estimating the robot move-

ment from ranging sensors and 2) detection and motion

estimation of moving objects. Both problems have been

studied in great detail in mobile robotics, as they are central

to a number of important problems. To date, however, these

tasks have generally been considered separately.

This paper describes an approach that performs both tasks

simultaneously, as a joint statistical inference process. It

builds on graphical model techniques and specifically CRF-

Matching [19] and CRF-Clustering [23]. The advantage of

formulating the problem as a joint inference process is that

it allows the transmission of information, from the model

performing scan-matching, to the model performing motion

detection and vice-versa.

There are two main contributions in this paper. First,

it provides a new formulation for the problems of scan-

matching, moving object detection and motion estimation as

a joint statistical inference procedure. Second, it presents an

J. van de Ven and F. Ramos are with the ARC Centre of
Excellence for Autonomous Systems, Australian Centre for Field
Robotics, University of Sydney 2006, NSW, Australia {j.vandeven,
f.ramos}@acfr.usyd.edu.au

G. D. Tipaldi is with the Social Robotics Lab, Department of
Computer Science, University of Freiburg, 79110 Freiburg, Germany
tipaldi@informatik.uni-freiburg.de

algorithm to perform Maximum a posteriori (MAP) infer-

ence in a graphical model with both discrete and continuous

random variables.

This paper is organised as follows: Section II presents an

overview of existing solutions to the association and moving

object detection problems. Section III discusses the basics of

Conditional Random Fields (CRF). This is followed by the

definition of the joint graphical model in Section IV. Section

V then compares the results of the model with current

state of the art scan-matching and moving object detection

implementations most notably, CRF-Matching and CRF-

Clustering. Finally, conclusions and directions for future

work are presented in Section VI.

II. RELATED WORK

Matching of laser range scans is generally performed using

the Iterative Closest Point (ICP) algorithm or one of its

many variants [14]. The algorithm iteratively minimises the

distance between laser points in one scan and corresponding

laser points in a consecutive scan by rotating and translating

one of the scans. Usually a nearest neighbour approach is

used to associate laser points. Despite having good compu-

tational performance, ICP has several problems. Firstly it

is sensitive to the initial estimated scan offset. Secondly it

does not provide a probabilistic interpretation for rotation

and translation or even for point correspondences. Finally, it

does not take into account other properties of the scans such

as shape, or intensity. Various variants of the ICP algorithm

have dealt with one or more of the above limitations (see for

example [8] or [5]). However, there is no variant of ICP that

address all these issues.

To overcome these limitations, a probabilistic data asso-

ciation model was proposed in [19]. The model is based

on Conditional Random Fields (CRF) where features repre-

senting different properties of the scans can be incorporated

and learned from data. Experimental results demonstrated the

benefits of the approach for large transformations, with no

prior initialisation. The current paper therefore extends the

CRF-Matching approach by incorporating motion detection

for each laser point and allowing for direct computation of

the translation and rotation of objects (sets of laser points).

The detection and tracking of moving objects (DATMO)

problem has been extensively studied [2], in different scenar-

ios, and using different sensors. Related work is discussed

with an emphasis on detecting moving objects from a moving

platform using a laser range finder. The related work is di-

vided into two categories; algorithms that perform detection

and algorithms that perform segmentation and tracking.



The detection algorithms address the problem in terms of

separating the data into static and dynamic clusters. Dynamic

points are used for tracking of dynamic objects while the

static points are used to obtain better motion estimates for

the moving platform.

Hähnel et al. [9] detect moving points in range data

using an Expectation-Maximisation (EM) based approach.

The algorithm maximises the likelihood of the data using a

hidden variable expressing the nature of the points (static or

dynamic).

In [26], two separate maps are maintained; one for the

static part of the environment and one for the dynamic. The

maps employ a modified occupancy grid framework which

also infers if points are static or dynamic.

Rodriguez-Losada and Minguez [20] improve data associ-

ation for the ICP algorithm. They introduce a new metric

which models dynamic objects to better reflect the real

motion of the robot. Their approach however, does not

distinguish moving objects from outliers.

The second category of algorithms focuses on object

segmentation and tracking. Anguelov et al. [1], [4] detect

moving points using simple differencing and then apply a

modified EM algorithm for clustering the different objects.

In [25] an integrated solution to the mapping and tracking

problem is defined: static points are used for mapping

and dynamic points for tracking. Data differencing and

consistency-based motion detection [24] is used for the

detection and segmentation of dynamic points. Points are

classified as static or dynamic and clustered into segments;

when a segment contains enough dynamic points is consid-

ered dynamic. Montesano et al. [16] subsequently improve

the classification procedure of [25] by jointly solving it in a

sequential manner.

Schulz et al. [22] use a feature based approach to detect

moving objects; the features used are the local minima of

the laser data. The objects are then tracked using a joint

probabilistic data association filter (JPDAF).

The focus for most of these approaches is on tracking

different objects under different hypothesis. The detection

part, however, is mainly based on heuristics such as scan dif-

ferencing. The detection routines observe the actual position

of the object and the velocities are computed by the tracking

algorithm. CRF-Clustering [23] on the other hand, applies

a feature based graphical model to the data. This allows it

to reason about the underlying motion of points; it detects

and tracks the objects in a single framework, iteratively

improving the estimates.

The work presented in [10] allows different, state-of-

the-art algorithms, to be combined in a cascaded/sequential

framework. The approach treats each algorithm as a ”black-

box” though it allows limited unidirectional interaction

through feature vectors. The model proposed in this paper

on the other hand, integrates and extends the CRF-Clustering

and CRF-Matching approaches into a single framework.

Motion estimates are computed in-line with motion detection

and data association, allowing for joint reasoning enhanced

estimates.

III. PRELIMINARIES

A. Conditional Random Fields

Conditional Random Fields [12] (CRFs) are undirected

graphical models that represent probability distributions; the

vertices of the graph index random variables while the edges

of the graph capture relationships between variables. In the

case of CRFs the distribution is conditional (a probabilistic

discriminative model); the hidden variables x = 〈x1,x2, ...,xn〉
are globally conditioned on the observations z; p(x | z).

Let C be the set of all cliques of the graph. The distri-

bution must then factorise as a product of clique potentials

φc(xc,z), where c ∈ C and xc are the hidden variables of

the clique. Clique potentials are commonly expressed by

a log-linear combination of feature functions, φc(xc,z) =
exp
(

wT
c · fc(xc,z)

)

, resulting in the definition of a CRF as:

p(x | z) =
1

Z(z)
exp

(

∑
c∈C

wT
c · fc(xc,z)

)

. (1)

Here Z(z) = ∑x exp(∑c∈C wT
c · fc(xc,z)) is the partition

function; it normalises the exponential ensuring Equation 1

is a proper distribution. C is again the set of all cliques

in the graph. wc are parameters (or weights). The feature

functions fc extract feature vectors given the value of the

clique variables xc and observations z.

B. Parameter Learning

The weights wc express the relative importance of each

feature function. As such they play an important role in

determining the shape of the distribution. The weights are

learnt by maximising the conditional likelihood (Equation

1) given labelled training data. In our case, this is computa-

tionally intractable as the partition function Z(z) sums over

the entire state space of all hidden variables. A typical graph

in the experiments contains on average 600 hidden variables

with an approximate total number of states of 100000.

We therefore use maximum pseudo-likelihood learning

[3]. Maximum pseudo-likelihood learning approximates the

joint by considering, for each hidden variable, only its

neighbours in the graph: the Markov blanket. As a result,

the partition function is approximated by summing over the

state space of individual hidden variables.

C. Inference

The model defined in the next section is a joint distribution

over data association, motion detection and motion clustering

hidden variables. The desired outcome of inference is a

configuration of the hidden variables for which the joint

distribution achieves its maximum; a maximum a posteriori

(MAP) inference problem. The proposed algorithm is a

variation on Max-Product Loopy Belief Propagation.

Belief Propagation (BP) [18] is a class of inference

algorithms in which each node sends messages to each of

its neighbours in the graph. The messages convey what a

node believes its neighbours’ state should be given its own

state. The received messages together with a node’s own

belief are then used to compute the MAP configuration.



Construction of the messages is performed using the Max-

Product algorithm [18] as follows:

mi j(xi) = max
x j

(

φ(x j,z)φ(xi,x j,z) ∏
k∈N ( j)\i

mk j(x j)

)

, (2)

where mi j(xi) is the message node j sends to node i.

φ(x j,z) is the local clique potential for node j. Local clique

potentials represent what a node believes its state is, given

the observations. Computation of the local potential can be

visualised as passing a message from the observation to the

node, see mZ in the left hand side of Figure 2. φ(xi,x j,z) is

the pairwise clique potential. Pairwise potentials relate nodes

i and j on either end of an edge. They transform the belief of

node j into a form suitable for node i and vice versa. Lastly

a product of all incoming messages is computed, except from

the node to which the message is being sent. In the left hand

side of Figure 2, the incoming messages are represented by

ma/c and mRT , while the outgoing messages mi j is visualised

as mout .

BP generates exact solution for graphs such as trees

or polytrees. The proposed model is neither a tree nor a

polytree. We therefore use Loopy Belief Propagation (LBP)

[17], an approximation to BP. In LBP, message propagation

continuous until the difference in messages falls below some

threshold, or until a maximum number of iterations has been

reached. Once message propagation is finished, the maximal

configuration can be found by applying Equation 3 to each

node in turn,

x∗i ∈ argmax
xi

(

φ(xi,z) ∏
j∈N (i)

m ji(xi)

)

. (3)

Here xi indicates the node while x∗i is its maximal con-

figuration. As can be seen, maximisation is performed on

a node’s own belief (local potential) combined with all

incoming messages. The maximal configuration for the node

is then simply a state for which the combined belief is

maximal.

IV. JOINT MODEL FOR SCAN MATCHING AND

CLUSTERING

A. Model Definition

As discussed in Section II, solutions for motion detec-

tion/estimation and scan matching are generally defined inde-

pendently. In reality though, both scan matching and moving

object detection are strongly interdependent; laser points

belonging to the same object will have similar associations

and vice versa.

Following [23], motion detection is formulated as a clus-

tering problem. The environment consists of one or more dy-

namic objects (one cluster for each dynamic object) together

with a cluster representing the background. Laser points are

clustered based on the object they belong to (i.e. those with

similar motion patterns). Additionally, here we also include

an outlier cluster for those points which can not reasonably

be considered part of an object. Given the clusters for static

xc1

xc2

xcN

xRT

xa1

xa2

xaN

z

Fig. 1. Graphical model for combined scan matching, motion clustering
and motion estimation.

and dynamic objects, motion estimation then determines the

rotation and translation of each object.

A model (Equation 4), is proposed to solve moving object

detection, motion estimation and data association simultane-

ously.

p(x | z) = p(xa,xc,xRT | z). (4)

Equation 4 expresses a conditional distribution of three

sets of hidden variables (xa, xc, xRT ) given an observation z.

The observation consists of two laser scans for which asso-

ciation and motion detection/estimation is to be determined.

The variables xa consists of N association nodes, where N

is the number of points in the first scan. Each of these nodes

is discrete with M+1 states; M being the number of points in

the second scan. The states of xa at node i have the following

interpretation: The first state indicates the likelihood that

point i in the first scan associates to point 1 in the second

scan. The second state is the likelihood of association to the

second point in the second scan, etc. Finally, the M +1 state

represents the likelihood that point i is an outlier.

The variables xc consists of N motion detection nodes,

with D discrete states each. Here D represents the number

of clusters a point can belong to. The interpretation is

analogous to that of association. The first state represents the

likelihood that point i belongs to the first object (cluster),

etc. By convention, the last state D represents the cluster

for outliers. The choice on number of clusters D may be

guided using a priori knowledge. If no such knowledge is

available then D can be set to M +1, i.e. start with a cluster

for each point. Once the inference algorithm has clustered

the points, any vacuous clusters can safely be discarded. The

inference algorithm will assign probability mass to each node

according to the likelihood of belonging to a cluster. Clusters

that have no significant probability mass for all nodes are

therefore not likely, and can be removed. For computational

reasons it is advisable to reduce the number of clusters.

Lastly, the variable xRT represents the rotational R and

translational T parameters of each object in the system

except the outlier cluster. As such this is a multi-dimensional

continuous variable. Note that the robot motion can be

obtained from the rotation and translation parameters of the

background object.



The graphical model corresponding to Equation 4 is shown

in Figure 1. The model consists of two chains, one for

motion clustering on the left, and one for data association

on the right. The two chains are connected using a variable

representing the motion estimates of the system, and a

variable for the observations. The motivation for using a

chain for both association and clustering stems from the way

scan data is obtained. The laser scanner obtains data points

sequentially and in a single plane; hence a chain to represent

this acquisition. Note that any correlation in the data is not

lost as there is a path from any one point in a chain to any

other point.

B. Inference

The inclusion of the variable xRT adds complexity. First

and foremost, rotation and translation are continuous quan-

tities whereas the nodes for association and clustering are

discrete in nature. This could result in a mixing of sums

and integrals in the inference procedure; in turn leading to

difficulties in obtaining a solution. However, as explained in

Section III-C, we formulate the problem as a MAP inference

procedure defined as:

xMAP = argmax
x

p(x | z), (5)

where x = 〈xa,xc,xRT 〉. Max-product inference operates on

the maxima of the hidden variable; it therefore does not suffer

from any mixed sum integral problem - provided closed form

solutions exist. The closed form solution to rotation and

translation can efficiently be computed by minimising the

error function in Equation 6 [13]:

R,T ← argmin
R,T

N

∑
i=1

(z1,iR+T − z2,xa
i
)2, (6)

where z1,i is the i-th point in the first scan and z2,xa
i

is the

point in the second scan corresponding to the i-th association.

The message passing schedule is, in our case, dictated

by the structure of the graph. In our model, the xa and xc

nodes are indirectly linked through the motion estimate node,

xRT . This is done for practical reasons, as it allows inference

to run as two chains simultaneously influencing each other.

It does require a flooding schedule [11]; each node always

sends messages to all of its neighbours. This ensures any

change in one chain is always propagated to the other. In

addition, the schedule visits xRT as every second node in the

schedule to facilitate joint reasoning, i.e. a schedule such as:

xc
1,x

RT ,xc
2,x

RT , ...,xc
N ,xRT ,xa

1,x
RT , ...,xa

N .

In order to reduce the computational cost of sending

messages to and from xRT , the message passing algorithm

is modified according to the right hand side of Figure 2. Our

modified belief propagation algorithm treats the value for

xRT as if it was observed. Outgoing messages mout contain

the same information as long as we ensure no information

(belief) is lost due to this change. In order to guarantee this,

local features that depend on xRT are recomputed each time a

node is visited. Any change to either rotation or translation

is then incorporated into the outgoing message mout . The

Z
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m
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m

m

Z
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Fig. 2. Message passing for a single node. Left node shows standard belief
propagation, right side uses proposed message propagation

observations z do not change, so any change in the message

mZ,RT is solely due to changes in xRT . In order for the

modified algorithm to behave as if messages are being passed

in both directions, the value of xRT needs to be updated in-

line with the message passing schedule. This requires xRT be

recomputed after each node has been visited.

Algorithm 1 Pseudo-code of the modified inference algo-

rithm.

1: xRT ← InitialiseRT ()
2: for iteration = 1 to MaxIterations do

3: for node = 1 to NumNodes do

4: mZ,RT ←ComputeLocalFeature(node,z,xRT )
5: for nb = 1 to Neighbours(node) do

6: ma/c←CollectIncomingMessage(node,nb)
7: mout ←ConstructMessage(node,nb,mZ,RT ,ma/c)
8: SendMessage(node,nb,mout)
9: end for

10: xRT ←ComputeRT ()
11: end for

12: if CheckConvergence() = true then

13: break

14: end if

15: end for

16: xRT ←ComputeRT ()
17: for node = 1 to NumNodes do

18: mZ,RT ←ComputeLocalFeature(node,z,xRT )
19: ma/c←CollectIncomingMessage(node)
20: xa/c←ComputeState(node,mZ,RT ,ma/c)
21: end for

The resulting algorithm is shown in Algorithm 1. To start,

xRT is initialised on line 1 to reflect that it is ’observed’.

Belief propagation is performed on lines 2-15. Before a node

propagates belief to one of its neighbours it computes its own

belief (line 4) from the observations z and the value for xRT .

For each of its neighbours Equation 2 is computed (lines 5-9)

and the output message is sent to its neighbour. After sending

messages to all neighbours, the crucial step of updating xRT

is executed on line 10; minimising Equation 6. After each

iteration of the algorithm convergence is checked, only if the

algorithm has converged can it be terminated early. Finally,

lines 16-21 compute the state of each node analogous to

standard LBP inference (Equation 3).



C. Feature Description

CRFs owe much of their popularity to the feature functions

fc in Equation 1. These encapsulate domain specific knowl-

edge which can subsequently be used in the probabilistic

framework of the CRF. For completeness a brief description

of each feature is provided below. The reader is referred to

[19], [23] for more detailed descriptions.

1) Association Local Features: A first class of association

local features use geometric properties of the data to identify

patterns (shapes) around a single point, say point i, in the

first scan. They then try to find the same pattern around each

point in the second scan. The resulting difference is an error

metric; points in the second scan that have a similar pattern

(a small value for the error metric) are more likely candidates

for association to point i in the first scan. The pattern finding

features are:

• Distance: Uses the distance to its first, third or fifth

neighbour.

• Angular: Uses the angle between the first, third or fifth

neighbours on either side.

• Geodesic: Uses the accumulated distance to its first,

third or fifth neighbour; visiting all points in between.

• Radius: Uses the range value.

In addition to the shape based features above, two other

features are used. These use the structure of the data and

optionally contextual information.

• Translation: Uses the distance between a point in the

first scan with every point in the second scan - analogous

to ICP.

• Registered Translation: Transforms each point in the

first scan according to its motion estimate. Then uses

the distance between the transformed point and every

point in the second scan.

The above features are not directly used in Equation 1.

They are, instead, used as inputs to boosting [7], [19]. The

outputs of boosting (the experiments employ AdaBoost [6]

with 50 decision stumps) are used as local feature values

in Equation 1. Using boosting results in better estimates for

the local potentials. There are two boosting features used for

association: 1) Data Boosting computes the likely associa-

tions and 2) Outlier Boosting determines the likelihood that

a point is an outlier.

2) Association Pairwise Features: These features fall

roughly into two categories. Those that use the structure of

the scan acquisition and those that use the observations.

The first category of features are those that use scan

acquisition structure. In an ideal world, without noisy mea-

surements and outliers, it would be straight forward to relate

the association of node i with that of node i + 1. If node

i associates to point j then node i + 1 can reasonably be

expected to associate to point j +1.

• Sequence: Expresses the sequential nature of association

by an identity matrix with the diagonal shifted.

• Pairwise Outlier: Expresses how outliers impact on

association transitions - from inlier to outlier and vice

versa.

The second category of pairwise features operate similarly

to the pattern finding local features. They use a measure

between two points on an edge in the first scan and compare

this measure with all possible combinations of this measure

in the second scan. The comparison produces a metric of

how pairs of points are related between the two scans (i.e. a

transition).

• Pairwise Distance: Uses the distance between points on

either end of an edge.

• Pairwise Translation: Uses the vector between two

points corresponding to an edge.

3) Clustering Local Features: The purpose of these fea-

tures is to determine whether points are part of the static

background, part of a dynamic object or are outliers.

• Cluster Distance: Uses distance between two scans to

cluster points based on their motion.

• Outlier: Uses a threshold value to indicate if the point

is an outlier.

• Cluster Inlier Enforces inlier consistency between asso-

ciation and clustering.

4) Clustering Pairwise Features: With the exception of

the outlier feature, all these features cluster by incorporating

neighbourhood information.

• Sequence: Enforces if neighbouring points belong to the

same cluster; an identity matrix.

• Neighbour Weight: Captures (non-)neighbouring rela-

tionships; scaled by the distance between the points.

• Neighbour Stiffness: Captures (non-)neighbouring rela-

tionships; scaled by the distance between associated

pairs of neighbouring points.

• Neighbour Distance: Expresses that points belonging to

the same cluster should preserve their relative distance

after transformation.

• Pairwise Outlier: Expresses how outliers impact on

cluster transitions - from inlier to outlier and vice versa.

V. EXPERIMENTS

We perform experiments using data collected with a laser

scanner mounted on a car travelling around the University of

Sydney campus [23]. 31 pairs of scans containing both static

and dynamic objects were manually annotated. The 31 scan

pairs can be divided into 8 subsets; each subset consisting

of sequential scan pairs. A single scan contains on average

about 300 points. As a result the proposed model consists of

a graph of 600 nodes (300 association + 300 clustering). The

clustering nodes are initialised with 5 states for each node

while the association nodes will have on average 301 states.

The proposed joint model is compared to three techniques

that compute laser point association and motion clustering

as separate tasks. The first technique employs ICP and the

output associations provide translation and rotation param-

eters from K-Means clustering [15]. The second technique

uses CRF-Matching [19] instead of ICP for association and

again K-Means for clustering. Note that K-Means requires

the number of clusters to be defined in advance. In the

experiments the number of clusters is set to 4 - the maximum



Fig. 3. A sequence of 4 scan association results with magnified dynamic object associations. Top row, left to right: ICP, CRF-Matching. Bottom row,
left to right: Proposed Joint Model, Ground Truth. Lines indicate MAP associations between laser points (outlier points have no connecting lines). All
techniques perform well on the background. Looking at the dynamic object, ICP is unable to associate the dynamic object. CRF-Matching does reasonably
well but struggles in the encircled area. The proposed model correctly associates points in the direction of motion.

Technique Accuracy(%) SED Outlier(%) (true/ratio)

ICP 69.19 119.10 34.60 (11.07/89.79)

CRF-Matching 71.03 116.16 13.01 (11.07/57.93)

Combined Model 74.13 96.13 12.96 (11.07/73.37)

TABLE I

ASSOCIATION METRICS FOR THE DIFFERENT TECHNIQUES.

based on the ground truth. Finally, the third technique uses

CRF-Matching and CRF-Clustering in turn. CRF-Clustering

is essentially the clustering layer in Figure 1 while CRF-

Matching is the association layer. This technique equates to

removing all the links connecting the two chains through xRT

in Figure 1 - this allows for a clear comparison and shows

the advantage of joint reasoning about motion detection and

scan matching.

Experiments are conducted in a leave-one-out cross val-

idation fashion. All CRF based techniques require learning

of the weights (18/12/30 weights for CRF-Matching/CRF-

Clustering/proposed model respectively). As such, 30 scan

pairs are used to training the model and 1 scan pair is used

for testing. This process is then repeated for each of the 31

scan pairs and averaging the results. This scheme ensures that

the results represent the model’s ability to deal with each of

the scan pairs individually. ICP and K-Means do not require

training, for these techniques the average over the 31 scans

is computed for fair comparison.

Figure 3 shows examples of association results for each

of the different association techniques together with the

association result of the proposed model and ground truth.

The figures contain 4 sequential scans, with the blue scan

being the most recently acquired scan. The dynamic object

is magnified in all figures. Looking at the results it is clear

that all perform quite well on the static points. The difference

is how the different techniques deal with the dynamic object.

ICP does poorly, this is to be expected since ICP uses only

nearest neighbour information for determining associations.

CRF-Matching does significantly better due to the fact that

it performs associations based on local shape information. It

is, however, unable to correctly associate the points in the

lower section (circled) of the dynamic object as the local

shape of these points is similar. The proposed model on the

other hand has clustering information available. This allows

it to correctly associate in the direction of motion.

The output of motion detection is analogous. Figure 4

shows the results for a single scan pair - for clarity. As

can be seen, the results for K-Means clustering depend

very much on the quality of the associations. Using ICP

for the associations, the results are inconsistent. K-Means

with CRF-Matching does significantly better but is adversely

affected by K-Means requiring the number of clusters to be

determined in advance. CRF-Clustering does better, because

like CRF-Matching, CRF-Clustering is able to infer more

from the scans. The proposed model does exceptionally well.

It correctly determines the number of clusters in the data

and there are very few mis-classifications - only a few in the

corner of the dynamic object.

In addition to the visual comparison, a quantitative mea-

sure of similarity between the association/clustering results

and the ground-truth is given. Tables I and II present a

performance comparison in terms of accuracy, String Edit

Distance (SED) [21] and outlier detection. The accuracy is
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Fig. 4. Motion detection results. Top row, left to right; K-Means initialised with ICP, K-Means initialised with CRF-Matching, CRF-Clustering. Bottom
row, left to right: Proposed Joint Model, Ground Truth. Different colours indicate different clusters (dark green for the static background), outlier points
have no coloured circle. K-Means (ICP) has very poor results mainly due the poor associations. CRF-Clustering and K-Means (CRF-Matching) have similar
results, though CRF-Clustering results are a little more consistent. The proposed model has near perfect result.

Technique Accuracy(%) SED Outlier(%) (true/ratio)

K-Means (ICP) 43.16 243.87 34.60 (11.07/89.79)

K-Means (CRF) 60.42 215.55 13.01 (11.07/57.93)

CRF-Clustering 60.04 190.03 24.35 (11.07/55.64)

Combined Model 83.22 79.61 13.12 (11.07/73.37)

TABLE II

MOTION DETECTION METRICS FOR THE TECHNIQUES.

the percentage of correctly associated/clustered points1. The

SED is a measure of how many permutations are required

on a string to make it match another. Here the two strings

are the association/clustering results on the one hand and the

ground-truth on the other. Therefore, the less the SED the

better. Finally the percentage of outliers gives a measure of

how useful the solution is. Solutions with a high percentage

of outliers may give a reasonable accuracy/SED but they

are not practical. Outliers are presented as the percentage of

outliers found, together with the true percentage of outliers

(from the ground-truth), and a ratio (percentage) of ground-

truth outliers that were found.

Table I confirms the visual results of Figure 3 for the com-

plete data set. The combined model outperforms both ICP

and CRF-Matching. A note on the results of ICP. Based on

the metrics provided, accuracy & SED, one might be inclined

to conclude that ICP did rather well. To a certain extent this

1A good association accuracy metric is difficult to define; associations
near to the true associations require a different penalty from those further
away.

Technique Rotation Error (radians) Translation Error (m)

K-Means (ICP) 0.02 1.01

K-Means (CRF) 0.04 0.77

CRF-Clustering 0.05 0.88

Combined Model 0.03 0.56

TABLE III

MOTION ESTIMATION METRICS FOR THE TECHNIQUES.

is true; the different scans were reasonably closely aligned

and there are relatively few dynamic points (ratio of dynamic

over static points is ∼ 0.14). ICP’s solution however, consists

(on average) of more than a third outliers. It should have

found around 11 percent of outliers. This high percentage

of outliers subsequently results in poor estimates for motion

detection. Metric comparison for the motion parameters is

given in Tables II and III. The comparison shows again

that joint reasoning about association and motion produces

better results. Table III shows average results for correctly

clustered objects only. The relatively good performance of

the K-Means based techniques is primarily due to correct

clustering of the background.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented a probabilistic model that jointly

reasons about laser point association, motion clustering and

motion estimation. The experimental results have demon-

strated that much can be gained by modelling different (but

dependent) problems in the same statistical framework. We



believe the methods presented here are an initial step towards

integrating multiple tasks in mobile robotics.

In its present form, the clustering and association chain

models are (indirectly) linked using the rotation and trans-

lation node. In future these two models will be directly

connected thus forming a clustering and association lattice.

The lattice more closely represents the dependencies between

the two models. The drawback of this is an increment in

the computational complexity. Note that a different graph

structure also allows for different message passing schedules

with different performance characteristics (see comment on

performance next).

Inference in the combined model is slow. For laser scans

with 361 points, this can take up to 4 minutes in our Matlab

implementation - depending on convergence. Analysis has

shown 3 performance bottlenecks. First, some of the pairwise

features are poorly implemented. This is exacerbated by

the second bottleneck; the fact that a flooding schedule is

used for message passing. Lastly the cost of computing

Equation 6. There are, however, several alternatives to speed

up inference. One possibility is to constrain the number of

states in the association model. For example, a particular

laser point can only be associated to one of its 10 nearest

neighbours rather than to all 361 points of the other scan.

This would significantly reduce the cost of searching for an

association. As well as a reduction in the computational cost

of message propagation - the size of the pairwise feature

functions will be quadratically reduced. Additionally, we

plan to investigate better inference algorithms, especially

ones with strong convergence guarantees. In this case, Linear

Programming (LP) relaxations appear as a potential candi-

date.
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