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Abstract

This thesis focuses on the development and improvement of Simultaneous Localization and
Mapping algorithms. In particular, we are interested in reliable and effective techniques for
unstructured large scale environments. While previous researcher focused on the analysis of
class of algorithms or general effects of different algorithms (e.g. complexity, convergence
or consistency), in this thesis we focus on analyzing the mapping process itself.

At first, we present an introspection analysis that allows efficient optimizations for Rao-
Blackwellized SLAM on grid maps. The key idea is based on an analysis of the mapping
process which allows us to perform filter updates conditioned to the state of the mapping sys-
tem: localization, mapping or loop closing . We are able to update the complex posterior with
substantially less resources by performing the computations only for a set of representatives
instead of for all potential hypotheses.

Extending this introspective analysis from a filter perspective to a general one, we find
out that the SLAM problem can de decomposed in three main subproblems: a) incremen-
tal mapping, that is the process of providing local constraints between consecutive poses, in
order to maintain the map locally consistent; b) loop closure: that is the process of finding
global constraints among different parts of the map; c) map optimization: that is the process
of combining local constraints (provided by the incremental mapper) and global constraints
(provided by the loop-closure algorithm) to obtain an overall consistent map. We show so-
lution to this three problems when using a laser range finder in both static and dynamic
environmnents.
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Chapter 1

Introduction

Autonomous mobile robots are a fascinating research challenge in current Robotics and AI
research fields. The knowledge of the robot position in the environment plays an important
role, when the robot has to accomplish rather complex tasks taking long time. Moreover, a
representation of the environment has to be provided, in order to allow the robot to reason
about its surroundings.

Usually, robots are equipped with proprioceptive sensors for estimating their relative
movements. However, those information are affected by systematic errors and random noise.
The integration of those effects over time yields to a growing drift between the estimated
and the real pose. Exteroceptive sensors (such as stereo cameras, laser range finders, inertial
measurement units, and so on...), in conjunction with a prior knowledge of the environment
(a map), are used to filter out that noise and to provide better estimates.

There are situations when a prior knowledge of the map is not feasible. In these cases,
exteroceptive sensors (usually providing range and/or bearing information) are used to build
an environment representation. Those sensors present limited sight range, thus the robot
needs to move while mapping. Unfortunately, when the robot moves, information obtained
from proprioceptive sensors are used. As stated above, the error on robot location increases
over time, and the resulting map accuracy decreases with the length of the traveled path. In
order to avoid that, the position of the robot has to be corrected with respect to the partial
map built so far. The combination of both localizing the robot and building the map is known
as the Simultaneous Localization And Mapping (SLAM) problem, and represents one of the
most challenged problem in autonomous mobile robotics.

Since Smith, Self and Cheeseman seminal paper [Smith, Self, & Cheeseman, 1990], re-
searchers have been converging toward a common understanding: probabilistic estimation.
They estimate the distribution over the possible maps and robot poses, given the sensor read-
ings. Many approaches have been proposed. They differ by the underlying representation
used (grids, features, etc.), and the estimation algorithm employed (Particle Filters, Extended
Kalman Filters, Information Filters, etc.).

With features, one can have a nice analysis of the problem, as the world is modelled in
a finite-dimensional way. Robot poses and features are random variables, and observations
are constraints among those. Once modelled in this way, several interesting results can be
provided. Some authors focused the attention on stability and consistency properties, mainly

1



2 1. Introduction

showing the limitation of the Extended Kalman Filter when applied to this problem. The
major problem consist in the linear assumption, which is quite valid locally but not globally.
Example of this works are [Frese & Hirzinger, 2001; Newman & Leonard, 2003; Julier &
Uhlmann, 2001]. Frese et. al [Frese & Hirzinger, 2001] showed that the linear assumption
in the Kalman Filter can cause systematic errors.

Other researches analyzed the complexity of The EKF and showed some results on the
sparsity of its dual: the Information Filter. An analysis of the sparsity of the covariance matrix
has been also done by Frese [Frese & Hirzinger, 2001]. Moreover, one of the major problems
of this kind of algorithm seems to be the computational complexity, which depends on the
size of the system state space to track. Such a size is proportional to the number of landmarks
n, and the filter requires O(n3) for each update. Therefore, the use of the Information Filter
for solving the SLAM problem is becoming more and more popular. The key concept of this
approach is that if the covariance matrix of a system can be dense, the information matrix
may be sparse, or its entries can be small. Example of this works are [Thrun et al., 2004;
Eustice, Walter, & Leonard, 2005; Eustice, Singh, & Leonard, 2005]. The same insight has
been proposed by Thrun et al. [Thrun et al., 2004]. In that work, the Information matrix is
made sparse, by zeroing some elements. Further improvements have been made by Eustice.
In a first work [Eustice, Walter, & Leonard, 2005] he pointed out some insight into matrix
sparsification and convergence. In a second work he proved that a delayed state formulation
of the problem yields to a sparse information matrix [Eustice, Singh, & Leonard, 2005].

A deeper analysis is carried by Dellaert [Dellaert, 2005a] showed some connections
among Linear Algebra, Graph Theory and the full SLAM, when it is modelled as an undi-
rected graphical model. Those undirected models describe the problem in terms of inter-
variable relationships. These relationship express spatial constraints among the poses of the
delayed state, thus resulting in good formalization for optimization techniques like [Duckett,
Marsland, & Shapiro, 2002; Frese, Larsson, & Duckett, 2005; Howard, Matarić, & Sukhatme,
2001b; Lu & Milios, 1997a; Olson, Leonard, & Teller, 2006; Grisetti et al., 2007a].

The SLAM problem has also been modelled with a Dynamic Bayesian Network. DBNs
are powerful in expressing infinite time series, by means of an evolution and an observation
model. Providing this models is straightforward in the case of slam, as they correspond to
the odometry and the observation likelihood. Moreover, the use of DBN shows an interesting
property of the SLAM problem:

Given the histories of poses, the landmarks are independent from each others.

This intuition is at the basis of a Rao-Blackwellized particle filter solution [Murphy, 1999]
and the FastSLAM algorithm [Montemerlo, Koller, & Wegbreit, 2003]. The state space is
factored into the robot trajectory, which is represented by particles, and the map, which can
be estimated analytically. While this algorithm has been introduced for maps with features,
it is later extended to grid maps by Hähnel et al. [Hähnel et al., 2003a].

Some authors studied the complexity of this family of algorithms, both from a time and
a memory point of view. As every particles has to store a complete map of the environment,
the memory requirements can be far beyond actual capabilities. A memory efficient map
structures have been introduced in [Eliazar & Parr, 2003].

Particle depletion [van der Merwe et al., 2000] has been studied. This problem often
occurs when the likelihood is highly peaked compared to the motion model, resulting in
particles having low coverage of the likelihood function support. A solution to this prob-
lem is to use an improved proposal distribution, which take the actual measurement into
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account [Grisetti, Stachniss, & Burgard, 2006].
However, SLAM is not yet an effective and reliable technology. The problem is very

complex, with scalability representing an important issue. State estimation algorithms present
poor performances in huge environments, especially in presence of significant angular errors.
Optimization techniques alleviate non-linear problems, but they need a good initial guess and
unique landmarks.

1.1 Contributions
The contributions of this thesis are based on a novel analysis of the SLAM problem. While
previous researcher focused on the analysis of class of algorithms or general effects of dif-
ferent algorithms (e.g. complexity, convergence or consistency), in this thesis we focus on
analyzing the mapping process itself. At first, we made a consistent analysis of current and
past research, providing an interesting taxonomy of the SLAM approaches. A second contri-
bution is an introspective analysis of Rao-Blackwellized particle filter solutions for the SLAM
problem. Thanks to this analysis, we were able to derive an approximate filter which is one
order of magnitude faster than current solutions, and requires several orders of magnitude
less memory, making it possible to compute in real time even larger maps. Extending this
introspective analysis from a filter perspective to a general one, we find out that the SLAM
problem can be decomposed in three main subproblems

Incremental Mapping: The process of building an incremental map. This process provides
local constraints between consecutive poses, in order to maintain the map always lo-
cally consistent.

Loop Closure: The process of finding global constraints among different parts of the map.
When a mapping robot returns in a previously mapped area, the error accumulated is
typically such that the head and the tail of the map estimate are inconsistent. Global
constraint between the robot pose at closure time and a previous pose in the already
mapped area are needed to obtain global consistent maps.

Map Optimization: The process of combining local constraints (provided by the incremen-
tal mapper) and global constraints (provided by the loop-closure algorithm) to obtain
an overall consistent map.

In this thesis, we provide a solution for each of this subproblems, both in a static and dynamic
environments.

This thesis is organized as follows. Bayes filtering and grid mapping are first introduced,
as they will be used in the rest of the thesis. An exhaustive taxonomy of the SLAM research
is provided in Chapter 3.

The first part of the thesis concentrates on the introspective analysis of filtering solutions
to SLAM. In Chapter 4 we describe the Rao-Blackwellized framework for SLAM, describing
how several aspect have been addressed by the researchers. An introspective analysis of this
framework is made in Chapter 5, and an approximate solution is derived.

The second part of the thesis focused on the introspective decomposition described before.
In Chapter 6 we describe how to compute local estimate of the robot motion in both a static
and dynamic environments. A novel formulation of loop closing and a related algorithm are
described in Chapter 7. Finally, in Chapter 8 a probabilistic framework for map optimization
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is presented. This framework is able to combine local and global constraints to provide a
mean and covariance estimation of the map.

1.2 Publications
Part of this thesis have been published in the following journal articles, conference and work-
shop proceedings:

• Grisetti, G.; Tipaldi, G.; Stachniss, C.; Burgard, W.; and Nardi, D. Fast and accu-
rate slam with rao-blackwellized particle filters. Robotics and Autonomous Systems,
Special issue on Simultaneous Localization and Map Building.

• Tipaldi, G. D.; Grisetti, G.; and Burgard, W. Approximated covariance estimation in
graphical approaches to slam. In IEEE/RSJ Intern. Conf. on Intelligent Robots and
Systems (IROS).

• Censi, A., and Tipaldi, G. D. Lazy localization using the frozen time smoother. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA).

• Grisetti, G.; Tipaldi, G. D.; Stachniss, C.; Burgard, W.; and Nardi, D. Speeding up rao
blackwellized slam. In IEEE International Conference on Robotics and Automation
(ICRA).

• Iocchi, L.; Pellegrini, S.; and Tipaldi, G. D. Building multi-level planar maps integrat-
ing LRF, stereo vision and IMU sensors. In Proc. of IEEE International Workshop on
Safety, Security and Rescue Robotics (SSRR).

• Calisi, D.; Farinelli, A.; Grisetti, G.; Iocchi, L.; Nardi, D.; Pellegrini, S.; Tipaldi, G. D.;
and Ziparo, V. A. Contextualization in mobile robots. ICRA’07 Workshop on Semantic
Information in Robotics.

• Calisi, D.; Farinelli, A.; Grisetti, G.; Iocchi, L.; Nardi, D.; Pellegrini, S.; Tipaldi, D.;
and Ziparo, V. A. Uses of contextual knowledge in mobile robots. In Proc. of the 10th
Congress of the Italian Association for Artificial Intelligence.

• Tipaldi, G. D.; Farinelli, A.; Iocchi, L.; and Nardi, D. Heterogeneous feature state
estimation with rao-blackwellized particle filters. In Proc. of IEEE International
Conference on Robotics and Automation (ICRA).

1.3 Collaborations
Part of this thesis have been done in collaboration with other people. The introspective filter
and the analysis of the state of the art have been done together with Giorgio Grisetti. Some
ideas have been presented in his PhD thesis [Grisetti, 2006]. The work on motion clustering
and estimation was done in tight colladoration with Fabio Ramos and Dieter Fox, during my
stay in Seattle.



Chapter 2

Preliminaries

This chapter introduce some basic techniques which will be used through the remaining of
this thesis. First we will introduce the Bayesian framework for estimating the state of a
stochastic dynamic system. We then introduce two techniques for building grid maps from
range data, namely occupancy grid and reflection grid.

2.1 Bayesian State Estimation

In this section, we revise the Bayesian state estimation framework, focusing in particular on
the filtering problem.

A probabilistic filter for a dynamic system is a mathematical tool, which goal is to esti-
mate a distribution of the possible system state xt given the input u1:t and the observation
z1:t history

p(xt | z1:t, u1:t) (2.1)

Several on line and off line techniques for solving the filtering problem have been pro-
posed [Kalman, 1960; Gordon, Salmond, & Ewing, 1993; Arumampalam et al., 2001; Pitt
& Shephard, 1999]. Most of them rely on the assumption that the process being observed is
Markovian. A process is Markovian if the current measurement is independent from the past
ones, given the current state

p(zt|z1:t−1, xt) = p(zt|xt) (2.2)

In the context of the SLAM problem, for the Markov assumption to hold, no moving ob-
jects unknown to the robot can populate the environment. This imposes obvious restrictions
to the application domains. However, in moderately dynamic environments most of the tech-
niques proposed in this section have shown to work. In case of big violations of the Markov
assumption, a typical approach consists in pre-processing the filter input in order to skip the
sensor readings generated by dynamic objects.

In the rest of this chapter we describe a wide range of useful tools for Bayes filtering. In
particular we will describe:

5
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• The optimal Bayes filter (BF), which represent the exact Bayesian inference but is
usually not applicable in practice due to the intractability of the required integrals;

• The Kalman filter (KF), which is an exact, closed form filter working with linear sys-
tems, affected by zero mean Gaussian noise;

• The Information filter (IF), which is the counterpart of the Kalman Filter exploiting a
different parametrization of the Gaussian distribution;

• The Particle filter (PF), which is a Monte Carlo method suitable for the state estimation
of non linear non Gaussian dynamic systems.

2.1.1 Optimal Bayes Filter
Let p(z|x) be the observation model , that is the density of the measurement z, given that
the system state is x, and let p(xt|xt−1) be the evolution model1. If the Markov assumption
holds, the posterior of the state chain up to time t is

p(x1:t|z1:t) =
p(zt|x1:t, z1:t−1)p(x1:t|z1:t−1)

p(zt|z1:t−1)
[by Markov assumption]

=
p(zt|xt)p(x1:t|z1:t−1)

p(zt|z1:t−1)

=
p(zt|xt)p(xt|xt−1)

p(zt|z1:t−1)
p(x1:t−1|z1:t−1) (2.3)

If one is interested in estimating the current state distribution, the filtering equation becomes
the following:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)

=
p(zt|xt)

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

p(zt|z1:t−1)

=
p(zt|xt)

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt∫

p(zt|z1:t−1, xt)p(xt|z1:t−1)dxt

= ηp(zt|xt)
∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (2.4)

here η is a normalization factor ensuring that Equation 2.4 correctly represents a probability
distribution.

Usually, the evaluation of Equation 2.4 is done in two steps: prediction and update.
In the prediction step, the result of the state transition from xt−1 to xt is computed. In the
update step, the last observation zt is incorporated in the previously computed probability

1 In the following sections, the evolution model is also referred to as motion model, since it is used for describing

the change of the robot state after motion. In the SLAM context the state transitions are governed by the propriocep-

tive sensings u0:t−1. For clarity of notation, but with loss of generality, in this chapter we omit the terms u0:t−1

which affect the transition model. This is equivalent to consider a time dependent transition model. In practice

p(xt|xt−1, ut−1) = pt(xt|xt−1).
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density. Referring to Equation 2.4, one can argue that the predict step consists in com-
puting the integral term. The update step is performed by weighting the predicted belief∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 with the last observation likelihood p(zt|xt). These two

steps can be found in all of the filters described in the reminder of this chapter.
Bayes filtering in this form is exact and can be used on any kind of system for which the

Markov assumption holds. Unfortunately, in the above equations there are some integrations
over the state space. In many cases the state space is high dimensional, and the Bayes filtering
cannot be directly implemented. For instance, in the SLAM problem the dimension of the
system state is the sum of the robot location dimension and the map space dimension, which
can easily be in the order of the hundreds or thousands. A straightforward evaluation of Equa-
tion 2.4 would require an integration over the entire state space. For this reason approximated
techniques are needed.

2.1.2 Kalman Filter
The Kalman filter (KF) [Kalman, 1960; Welch & Bishop, 2001] is an exact filter that can be
derived directly by Equation 2.4, under the assumptions that the system is linear and the noise
is Gaussian. Under these linearity hypotheses the system can be described by

xt = Ftxt−1 + wt

zt = Htxt + vt

The system noise wt ∼ N (0,Σwt) and the observation noise vt ∼ N (0,Σvt) are zero
mean normally distributed. The key advantage of the Kalman Filter is that it represents the
distributions in closed form, in terms of means and covariance matrix. The update of the
Kalman filter can be carried out in the time of a matrix multiplication (O(n3), where n is the
state dimension).

The iterative algorithm of the filter is the following:

• predict:
x′t = Ftxt−1 Σ′t = FtΣt−1F

T
t + Σwt

• update:
Kt = Σ′tHt

(
HtΣ′tH

T
t + Σvt

)−1

xt = x′t +Kt (zt −Htx
′
t) Σt = (I −KtHt) Σ′t

Unfortunately, in the mobile robot domain, the evolution model, as well as the observation
model are non linear, thus the noise cannot be considered Gaussian. However, for mild evo-
lution laws, a non linear extension can be used: the Extended Kalman Filter (EKF) [Welch
& Bishop, 2001], in which local linearization of the state transition function f and the ob-
servation model h are performed. The extended Kalman filter algorithm can be expressed
as

• predict:
x′t = ft(xt) Σ′t = FtΣt−1F

T
t + Σwt

• update:
Kt = Σ′tHt

(
HtΣ′tH

T
t + Σvt

)−1

xt = x′t +Kt (zt − ht(x′t)) Σt = (I −KtHt) Σ′t
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here Ft = ∇xft|xt and Ht = ∇xht|xt .
The key limitations in the use of extended Kalman filter lies in the strong assumptions

that have to be done on the estimated system, namely: Gaussian noise, and linearizability. In
practical situations, mild violations to the above assumptions lead only to a loss of optimality.
However, in most of the robotic systems used for localization and SLAM, the uncertainty is
not expressible nor approximable as a Gaussian distribution, being multi modal and irregu-
larly shaped. When more modes are present in a distribution, dealing with multiple hypothe-
ses is needed, while the Kalman Filter works on their mean. In such a situations, its use is
prone to failure. Moreover, the linearization of the system can introduce some systematic
error in the estimate.

Finally, some systems cannot be linearized (being the 1st order derivatives of the state
transition function null), thus the extended Kalman Filter cannot be applied. In these con-
texts the Unscented Kalman Filter (UKF) [Julier, Uhlmann, & Durrant-Whyte, 1995; van
der Merwe et al., 2000] can be used. The key difference among EKF and UKF lies in the
filter update step. The first computes a local linearization of the transition function around
the current mean estimate, and uses this local linearization for computing the predicted dis-
tribution. The second systematically selects a set of sampling points (σ-points) in the state
space, around the mean. The σ-points are selected along the eigenvectors of the covariance
matrix. Subsequently, the σ-points are translated according to the transition function, and
their translation is used for computing the predicted mean and covariance. While the UKF in
general behaves better than the Kalman filter the hypothesis of Gaussian noise is still required
to hold.

Despite the above outlined limitations, the Kalman Filter is one of the most used tools
in localization and SLAM, due to its simplicity. Moreover, when the underlying hypotheses
hold, it exhibits a strong convergence rate if compared with other filtering techniques.

2.1.3 Information Filter

The information filter, or inverse covariance filter is the dual of the Kalman filter for lin-
ear Gaussian systems. In the information filter, the covariance matrix and state vector are
replaced by the information or precision matrix and information vector, as the canonical rep-
resentation of the Gaussian is used.

The multivariate Gaussian density function can be expressed in two complementary parametriza-
tion. The first and more used one is the moment parametrization

p(x) =
1√

(2π)n|Σ|exp
{
−1

2
(µ− x)TΣ−1(µ− x)

}
(2.5)

where µ and Σ are the parameters and n is the dimensionality. The name comes from the fact
that the parameters reflects the first and second moment of the distribution

E(x) = µ (2.6)
Cov(x) = Σ (2.7)

Another way to represent the Gaussian distribution is through the canonical parametriza-
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Figure 2.1: Kalman filter. The predict (top) and update (bottom) phases of the Kalman filter

in the onedimensional case. the thick line in both graphs represent the estimation on the state

and covariance for the prediction and update equation.
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tion

p(x) = exp
{
a+ ηTx− 1

2
xTΛx

}
(2.8)

a = −1
2
(
n log(2π)− log |Λ|+ ηTΛ−1η

)
(2.9)

where Λ = Σ−1 is the information matrix and η = Σ−1µ is the information vector.
The duality of the parametrization arise when performing standard operations like condi-

tioning and marginalizing. Let x be a multivariate Gaussian random variable. Consider the
following partition of x

x =
[
x1

x2

]
(2.10)

where x1 and x2 are still multivariate Gaussian random variables. If x ∼ N (µ,Σ) where

µ =
[
µ1

µ2

]
(2.11)

Σ =
[

Σ11 Σ12

Σ21 Σ22

]
(2.12)

(2.13)

then x1 ∼ N (µm1 ,Σ
m
1 ) with

µm1 = µ1 (2.14)
Σm1 = Σ11 (2.15)

If instead x ∼ N−1(η,Λ) where

η =
[
η1

η2

]
(2.16)

Λ =
[

Λ11 Λ12

Λ21 Λ22

]
(2.17)

(2.18)

then x1 ∼ N−1(ηm1 ,Λ
m
1 ) with

ηm1 = η1 − Λ12Λ−1
22 η2 (2.19)

Λm1 = Λ11 − Λ12Λ−1
22 Λ21 (2.20)

Thus, marginalizing is easier in the moment parametrization, as the operation is simply per-
formed selecting some sub blocks of the parameters. The situation is reversed when we want
to condition the distribution on x2 instead of marginalize. If x ∼ N (µ,Σ) we have that
x1|2 ∼ N (µc1|2,Σ

c
1|2), with

µc1|2 = µ1 − Σ12Σ−1
22 (x2 − µ2) (2.21)

Σc1|2 = Σ11 − Σ12Σ−1
22 Σ21 (2.22)
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if instead x ∼ N−1(η,Λ) we have that x1|2 ∼ N−1(ηc1|2,Λ
c
1|2) with

ηc1|2 = η1 − Λ12x2 (2.23)
Λc1|2 = Λ11 (2.24)

When the canonical parametrization is used, the Kalman filter becomes the information
filter and has the following iterative structure and equations

• predict:
η′t = Lt[F−1

t ]T ηt−1 Λ′t = LtMtL
T
t + CtΣ−1

ωt C
T
t

Mt = [F−1
t ]TΛt−1F

−1
t (2.25)

Ct = Mt[Mt + Σ−1
ωt ]−1 (2.26)

Lt = I − Ct (2.27)

• update:
ηt = η′t +HtΣ−1

vt zt Λt = Λ′t +HtΣ−1
vt H

T
t

The Extended Information Filter uses the same ideas behind the Extended Kalman Filter.
The matrices F andH are replaced by first order Jacobian, Ft = ∇xft|xt andHt = ∇xht|xt .
Another approach, maybe the most used one, is to use the equation of the Kalman Filter up-
date and then use some inversion theorem to derive a special case for updating the Information
Filter.

The main advantage of the information filter is that N measurements can be filtered at
each time step simply by summing their information matrices and vectors. Moreover, while
the Kalman filter stores into the Covariance matrix all the information relatives, causing it
to became dense, the Information Filter just stores within the Information Matrix only the
direct information, keeping a sparse structure. This sparsity is the key of some efficient
implementation of the information filter for SLAM.

2.1.4 Particle Filters
A particle filter is a non parametric implementation of a Bayes filter used to estimate the state
of a non-linear non-Gaussian dynamic system. The state distribution is represented by a set
S of N weighted samples, called particles

S = {〈x(i), w(i)〉|i = 1, . . . , N} (2.28)

The distribution is then approximated by a weighted sum

p(x) '
∑
i

w(i)δx(i)(x). (2.29)

where δx(i)(x) is the impulse function centered in x(i). The denser are the samples x(i) in a
region, the higher is the probability that the current state falls within that region.

Ideally, if we want to estimate the state of a dynamic system given its observation, we
would like to draw this samples from the posterior distribution p(x1:t|z1:t). Such a distribu-
tion is in general not available in a form suitable for sampling. However, the Importance
Sampling (IS) principle ensures that if one can
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Figure 2.2: Sampling from a proposal distribution. The picture shows a proposal distribution

and the samples drawn from it. The more dense are the samples in a region, the higher is the

probability density in that region. We compute the probability mass falling in an interval ∆p

by summing the weights of the samples falling in the interval.

• evaluate point wise and draw samples from an arbitrarily chosen importance density
function π(x1:t | z1:t), such that p(x1:t | z1:t) > 0⇒ π(x1:t | z1:t) > 0, and

• evaluate point wise p(x1:t | z1:t),

then it is possible to recover the sampled approximation of p(x1:t | z1:t) by computing the
importance weigths

p̂(x1:t | z1:t) ∝
∑
i

w(i)δ
x

(i)
1:t

(x1:t). (2.30)

Here {x(i)
1:t} are samples drawn from π(x1:t | z1:t) and w(i)

t = p(x
(i)
1:t|z1:t)

π(x
(i)
1:t|z1:t)

is the importance

weight related to the ith sample that takes into account the mismatch among the target dis-
tribution p(xt | z1:t) and the importance function. Observe that, in case we are able to draw
samples from the target distribution, such that p(x(i)

1:t | z1:t) ∝ π(x(i)
1:t | z1:t) then all of

the weights are the same, and the variance of w(i) is 0. An intuitive explanation of how the
importance sampling principle works is given in Figure 2.2 and Figure 2.3.

Sequential Importance Sampling

The Sequential Importance Sampling (SIS) algorithm is a Monte Carlo method that forms the
basis for most of the particle filter algorithms. By restricting to the set of Markovian systems,
and in particular focusing the choice on a particular class of importance functions, such that

π(x1:t | z1:t) = π(xt | x1:t−1, z1:t)π(x1:t−1 | z1:t−1) (2.31)
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Figure 2.3: The Importance Sampling principle. The picture shows the samples, weighted

according to the Importance Sampling principle. The ratio between the proposal and the

target distribution is sketched in red. The particles are weighted according to this mismatch

and their size reflects the weight value.

it is possible to compute recursively the importance weights, without revising the past gener-
ated trajectories, since

w
(i)
t =

p(x(i)
1:t | z1:t)

π(x(i)
1:t | z1:t)

=
p(zt | x(i)

t )p(x(i)
t | x(i)

t−1)

p(zt | z1:t−1)π(x(i)
t | x(i)

1:t−1, z1:t)

p(x(i)
1:t−1 | z1:t−1)

π(x(i)
1:t−1 | z1:t−1)

= η
p(zt | x(i)

t )p(x(i)
t | x(i)

t−1)

π(x(i)
t | x(i)

1:t−1, z1:t)
w

(i)
t−1

∝ p(zt | x(i)
t )p(x(i)

t | x(i)
t−1)

π(x(i)
t | x(i)

1:t−1, z1:t)
w

(i)
t−1 (2.32)

Where η = 1/p(zt | x(i)
1:t−1, z1:t−1) is a normalization factor. Several approaches select

the importance function to be the transition model p(xt|xt−1). According to the importance
sampling principle the weights w(i)

t can be computed as follows:

w
(i)
t =

p(x(i)
1:t | z1:t)

p(x(i)
t | x(i)

t−1)π(x(i)
1:t−1)

= [using Equation 2.32]

∝ p(zt | x(i)
t )p(x(i)

t | x(i)
t−1)

p(x(i)
t | x(i)

t−1)
w

(i)
t−1

∝ w
(i)
t−1p(zt | x(i)

t ). (2.33)
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The appropriateness of such a choice depends on the the observation model p(zt|xt). If
the transition model variance is significantly greater than the observation model one, it can
result that a small fraction of the generated samples falls into a high likelihood area, and the
filter requires a huge number of particles for representing the state PDF. The SIS algorithm
thus consists of a recursive propagation of the weights and support points as each measure-
ment is received sequentially. A pseudo-code of the algorithm is given by Algorithm 1

Algorithm 1: Sequential Importance Sampling (SIS)

Input: 〈x(i)
t−1, w

(i)
t−1〉Ni=1, zt

Output: 〈x(i)
t , w

(i)
t 〉Ni=1

for i = 1 to N do1

Draw x(i) ∼ π(x(i)
t | x(i)

1:t−1, z1:t)2

Compute the particle weight w(i)
t according to Equation 2.323

end4

Sampling Importance Resampling

The direct use of a Sequential Importance Sampling filter requires a huge number of samples,
since as the system evolves all of the particles but one will have a high weight. For this
reason the Sampling Importance Resampling (SIR) filter [Gordon, Salmond, & Ewing, 1993]
has been introduced.

A SIR filter, sequentially processes the observations zt and the state transitions xt−1 →
xt as they are perceived, by updating a set of samples representing the estimated distribution
p(x1:t | z1:t).

This is done by performing the following three steps:

1. Sampling: The next generation of particles {x(i)
t } is obtained by the previous genera-

tion {x(i)
t−1}, by sampling from a proposal distribution π(xt | x(i)

1:t−1, z1:t).

2. Importance Weighting: An individual importance weight w(i) is assigned to each
particle, according to the IS principle

w(i) = w
(i)
t−1

p(x(i)
t | x(i)

1:t−1, z1:t)

π(x(i)
t | x(i)

1:t−1, z1:t)
. (2.34)

The weightsw(i) account for the fact that the proposal distribution π(x(i)
t | x(i)

1:t−1, z1:t)
in general is not equal to the true distribution of successor states.

3. Resampling: Particles with a low importance weight w are typically replaced by sam-
ples with a high weight. This step is necessary since only a finite number of particles
are used to approximate a continuous distribution. Furthermore, resampling allows to
apply a particle filter in situations in which the true distribution differs from the pro-
posal one.
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A pseudo-code for the SIR filter is given by Algorithm 2. For completeness, we re-
port a common resampling technique in Algorithm 3. Please note that a SIR filter here
described, assumes the proposal to be suitable for sequential estimation. This means that
π(x(i)

t | x(i)
1:t−1, z1:t) satisfies Equation 2.31.

Algorithm 2: Sampling Importance Resampling (SIR)

Input: 〈x(i)
t−1, w

(i)
t−1〉Ni=1, zt

Output: 〈x(i)
t , w

(i)
t 〉Ni=1

for i = 1 to N do1

Draw x(i) ∼ π(x(i)
t | x(i)

1:t−1, z1:t)2

Compute the particle weight w(i)
t according to Equation 2.323

end4

// Normalize the weights

Compute t =
∑N
i=1 w

(i)
t5

for i = 1 to N do w(i)
t = w

(i)
t

t6

// Resampling using Algorithm 3

〈x(i)
t , w

(i)
t 〉Ni=1 =resample(〈x(i)

t , w
(i)
t 〉Ni=1)7

Particle Depletion

While the resampling step is needed for concentrating the computational effort of the filter in
state space regions having a high likelihood, it introduces additional problems. This problem
becomes evident when the proposal distribution concentrates the sample in regions of low
probability of the target distribution. Most of the samples generated generated by such a
proposal have low weight and are likely to be suppressed by resampling. In some degenerated
situation, after the resampling step only one particle is retained. This problem is known of as
particle depletion [van der Merwe et al., 2000].

Two are the techniques for lessening particle depletion: sampling from a proposal which
is closer to the target distribution, and adding artificial noise to the observation model. The
first solution is structural, since the choice of a better proposal distribution makes the im-
portance weights value to be similar for all of the particles, in fact limiting the particle sup-
pression in the resampling stage. The second solution can lead to a working filter, but the
introduction of artificial noise decreases the accuracy of the estimate with respect to the one
achievable by using the original observation model. Moreover, when using a better proposal
distribution particle depletion can be lessened by reducing the number of resampling actions.

Some alternative filtering schemes have been proposed, in order to lessen particle deple-
tion, like the auxiliary particle filter By Pitt and Shephard [Pitt & Shephard, 1999], however
the improvements achievable using these techniques are orthogonal to the selection of an
improved proposal.
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Algorithm 3: Systematic Resampling
Input: S, input sample set

Output: R, the unweighted output distribution

R = {}1

n =sampleFromUniform(0, |S|−1)2

t = n3

c = 04

forall s(i) =< w(i), x(i) >∈ S ′ do5

c = c+ w(i)6

while c > t do7

r(i) =< x(i), |S|−1 >8

R = R∪ {r(i)}9

t = t+ |S|−110

end11

end12

Number of Effective Samples

Liu [Liu, 1996] introduced the so-called effective number of particles Neff to estimate how
well the current particle set represents the true posterior. This quantity is computed as

Neff =
1∑N

i=1

(
w(i)

)2 . (2.35)

The intuition behind Neff is as follows. If the samples were drawn from the true posterior,
the importance weights of the samples would be equal to each other, due to the importance
sampling principle. The worse is the approximation the higher is the variance of the impor-
tance weights. Since Neff can be regarded as a measure of the dispersion of the importance
weights, it is a useful measure to evaluate how well the particle set approximates the true
posterior.

Choice of the optimal proposal distribution

The optimal sequential importance function has been introduced in [Liu, 1996]:

π(xt|z1:t) = p(xt|x(i)
t−1, zt) (2.36)

=
p(zt|x(i)

t−1, xt)p(xt|x(i)
t−1)

p(zt|x(i)
t−1)

(2.37)

The optimality has to be intended as minimizing the variance of the importance weights.
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If drawing from the optimal proposal distribution, the importance weight w(i) for each
particle i is computed according to item 2.34:

w
(i)
t =

p(x(i)
1:t | z1:t)

π(x(i)
1:t | z1:t)

= (2.38)

=
p(x(i)

1:t | z1:t)

p(x(i)
t | x(i)

t−1, zt)π(x(i)
1:t−1 | z1:t−1)

∝ p(zt | x(i)
t )p(x(i)

t | x(i)
t−1)

p(xt|x(i)
t−1, zt)

w
(i)
t−1

= w
(i)
t−1p(zt | x(i)

t−1). (2.39)

Rao-Blackwellization

When the state space is very big, sampling can be computationally expensive. In this case,
however, it is possible to address the problem by exploiting the Rao Blackwell theorem,
obtaining a Rao-Blackwellized particle filter [Doucet, 1998]. This technique can be applied
when the dynamic Bayesian network of the system has a particular structure [Doucet et al.,
2000a]. It consists in partitioning the state space X in two subspaces Xa and Xb. The
partition has to be made according to the structure of the system, ensuring that, given a state
xt ∈ X , its projection xat ∈ Xa depends only on the previous state xt−1 and the current
observation zt. The x projection xbt ∈ Xb should be updated analytically and efficiently
once xat is known. This partitioning allows to sample only from Xa, in fact decreasing the
effective sampling space dimension.

2.2 Grid Mapping
There exist different types of models for representing the environment which are frequently
used in mobile robotics. The most common ones are feature maps, geometric maps, and grid
maps. A feature map stores a set of features detected in the environment. Typical features
are lines and corners when proximity sensors are used. Other possibilities are visual features
based on the scale invariant feature transform (SIFT) [Lowe, 2004] whenever a camera is
used to perceive the environment. For each feature, these maps store the feature information
together with a coordinate and eventually an uncertainty measure. Geometric maps represent
all obstacles detected by the robot as geometric objects, like circles or polygons. This kind
of representation is comparably compact and needs only few memory resources. Throughout
this thesis, we use grid maps to model the environment. Grid maps discretize the environ-
ment into so-called grid cells. Each cell stores information about the area it covers. Most
frequently used are occupancy grid maps that store for each cell a single value representing
the probability that this cell is occupied by an obstacle. The advantage of grids is that they do
not rely on predefined features which need to be extracted from sensor data. However, they
have the disadvantages of discretization errors and of requiring a lot of memory resources. In
this section, we first introduce the occupancy mapping algorithm, developed by Moravec and
Elfes [Moravec, 1988]. Afterwards, we briefly describe a variant called reflection probability
maps.
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2.2.1 Occupancy Probability Mapping
Occupancy grids store for each cell c a probability (c) of being occupied by an obsta-
cle. In the following, we will derive the map update algorithm introduced by Moravec and
Elfes [Moravec, 1988] which computes the occupancy probability p(m) for the grid map m.
Assuming that the different cells are independent we have that

p(m) =
∏
c∈m

P (c) (2.40)

Let z1:t be a sequence of observations obtained by the robot at the positions x1:t. By
conditioning the map probability over those variables, we obtain

p(c|x1:t, z1:t) =
p(zt|c, x1:t, z1:t−1)p(c|x1:t, z1:t−1)

p(zt|x1:t, z1:t−1)
(2.41)

Assuming that the process is Markovian, we have

p(c|x1:t, z1:t) =
p(zt|c, xt)p(c|x1:t, z1:t−1)

p(zt|x1:t, z1:t−1)
(2.42)

Now consider the term p(zt|c, xt). Applying Bayes’ rule we obtain

p(zt|c, xt) =
p(c|xt, zt)p(zt|xt)

p(c|xt) (2.43)

Let now combine together Equation 2.42 and Equation 2.43. Let us furthermore assume that
xt and c are independent if not conditioned on zt. This leads to

p(c|x1:t, z1:t) =
p(c|xt, zt)p(zt|xt)p(c|x1:t, z1:t−1)

p(c)p(zt|x1:t, z1:t−1)
(2.44)

Exploiting the fact that each cell is a binary variable, we have that

p(¬c|x1:t, z1:t) =
p(¬c|xt, zt)p(zt|xt)p(¬c|x1:t, z1:t−1)

p(¬c)p(zt|x1:t, z1:t−1)
(2.45)

dividing Equation 2.44 by Equation 2.45 we obtain

p(c|x1:t, z1:t)
p(¬c|x1:t, z1:t)

=
p(c|xt, zt)p(¬c)p(c|x1:t, z1:t−1)
p(¬c|xt, zt)p(c)p(¬c|x1:t, z1:t−1)

(2.46)

Finally, using the fact that p(¬c) = 1− p(c) and defining

Odds(x) =
p(x)

1− p(x)
(2.47)

we obtain

Odds(c|x1:t, z1:t) = Odds(c|xt, zt)Odds(c)−1Odds(c|x1:t, z1:t−1) (2.48)

To recover the occupancy probability from the Odds representation given in Equation 2.48
we use the following formula which can easily be derived from Equation 2.47

p(x) =
Odds(x)

1 + Odds(x)
(2.49)
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This leads to the following occupancy update formula

p(c|x1:t, z1:t) =
[
1 +

1p(c|xt, zt)
p(c|xt, zt) ·

p(c)
1− p(c) ·

1p(c|x1:t1, z1:t1)
p(c|x1:t1, z1:t1)

]−1

(2.50)

Equation 2.50 tells us how to update our belief p(c|x1:t, z1:t) about the occupancy prob-
ability of a grid cell given sensory input. In practice, one often assumes that the occupancy
prior is 0.5 for all cells so that p(c)

(1p(c)) can be removed from the equation.

2.2.2 Reflection Probability Mapping
Beside occupancy probability grids, there exist alternative realization of grid maps. A fre-
quently used model is the so-called reflection probability map or counting model. In contrast
to occupancy grid maps, they store for each cell a reflection probability value. This value
provides the probability that a measurement covering the cell is reflected. Note that the oc-
cupancy model and the counting model are similar but not identical. In this model, we are
interested in computing the most likely reflection probability map m∗ given the observations
and poses of the robot.

m = argmax
m

p(m|x1:t, z1:t) (2.51)

Assuming a uniform prior probability for p(m) this is equivalent to maximize

m = argmax
m

p(z1:t|x1:t,m) (2.52)

= argmax
m

t∏
i=1

p(zi|xi,m) (2.53)

= argmax
m

t∑
i=1

log p(zi|xi,m) (2.54)

Now we have to define the likelihood function p(zt|xt,m). This is done by defining the
likelihood of each beam zt,n

p(zt,n|m,xt) =

{ ∏zt,n−1
k=0 (1−mf(xt,n,k)) if ξt,n = 1

mf(xt,n,k)

∏zt,n−1
k=0 (1−mf(xt,n,k)) if ξt,n = 0

(2.55)

where mj is the j-th cell of the map and f(xt, n, k) maps the reading beam to cells of the
map. ξt,n is binary variable defining if the reading is reflected by an object or is a max-reading
one. By placing Equation 2.55 into Equation 2.54 we have

m∗ = argmax
m

 J∑
j=1

αj logmj + βj log(1−mj)

 (2.56)

αj =
T∑
t=1

N∑
n=1

I(fxt,n,zt,n = j)(1− xit,n) (2.57)

βj =
T∑
t=1

N∑
n=1

zt,n−1∑
k=0

I(fxt,n,k = j) (2.58)
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Where αj corresponds to the number of times a beam that is not max-range ended in cell
j (hits(j)) and βj corresponds to the number of times a beam intercepted a cell j without
ending in it (misses(j)).

If we compute the gradient of the map with respect to the single cells, we obtain that

∂m

∂mj
=
αj
mj
− βj

1−mj
(2.59)

Setting the gradient to 0 we have that

mj =
αj

αj + βj
(2.60)

The reflection propability is thus obtained by counting the number of times the cell got
hit, divided by the number of times the cell got observed (hit + miss). Since the value of
each cell can be determined by counting, this technique is also called counting model. The
differences between occupancy probability and reflection probability maps is that the occu-
pancy probability typically converges to 0 or 1 for each cell which is frequently observed.
In contrast to that, reflection probability values converge to values between 0 and 1. Values
significantly different from 0 or 1 often occur when mapping objects much smaller than the
grid discretization or, for example, for glass panes which are repeatedly observed with a laser
range finder.



Chapter 3

A Taxonomy of Simultaneous
Localization and Mapping

3.1 Introduction

In this section, an overview of the Simultaneous Localization And Mapping is given. Roughly
speaking, the SLAM problem consists in jointly estimating the position and orientation of
the robot, as well as a map of the environment, given the observation histories. The two
terms in the estimation process (robot pose and map) are strictly connected with each other.
This is often characterized as a chicken and egg problem, as a map is needed for a good
pose estimation, while a good estimation of the pose is needed for building a consistent
map [Thrun, 2002]

Since Smith, Self and Cheeseman seminal paper [Smith, Self, & Cheeseman, 1990], re-
searchers have been converging toward a common understanding: probabilistic estimation.
They estimate the distribution over the possible maps and robot poses, given the sensor read-
ings.This is primarily due to the simplicity of modeling measurement and process noise. Even
if some other approaches, mainly based on optimization techniques, seem to diverge from this
common view, they can be seen as special cases. They solve the problem by searching for
the map/trajectory which minimizes the error among the observations and the candidate solu-
tion. However, the two approaches are substantially equivalent: the world configuration with
minimum error can be seen as the configuration for which the readings are more likely.

The key idea is to model the system in terms of probability distributions, thus reducing the
SLAM problem in a density estimation problem. A probabilistic formulation of the SLAM
problem consists in the estimation of the following distribution:

p(mt, xt|z1:t, u0:t−1) (3.1)

here m is the unknown map, xt is the robot pose in the environment at time t, z1:t =
{z1, z2, . . . , zt} and u0:t = {u0, u1, . . . , ut−1} are respectively the exteroceptive sensing his-
tory and the proprioceptive sensing history up to time t. The exteroceptive sensors are able to

21



22 3. A Taxonomy of Simultaneous Localization and Mapping

acquire robot centered environment measures. For this reason the exteroceptive sensing his-
tory z1:t can be also referred to as observation history, since it is relative to the observations
made about the environment. Conversely, proprioceptive sensors are able to measure varia-
tions of the robot parameters, like changes in relative position, or the speed of the wheels.

In designing a SLAM algorithm, a crucial issue is the choice of the map representation.
This choice is affected by both the assumptions made on the system and on the environment,
like the possibility of extracting unique landmarks, or the presence of structure in the operat-
ing scenario. Some methods focus on the construction of a topological representation of the
environment, by describing the relationships among the different places, abstracting on the
concept of distance. Others proposed pure metric representations.

In this work, we focus on the construction of dense grid maps, for planar environments,
although some of the described concepts can be generalized to different representations. In
the rest of this chapter, we describe some relevant map representations. Subsequently, we
present the techniques that can be used for updating the above representations. Finally, we
present and discuss some open issues.

3.2 Map Representations

The representation of the map is one of the fundamental issues in the SLAM problem. Good
representations should be rich enough to let the robot localize and autonomously navigate,
while being compact and with low spatial complexity. Moreover, different representations
yield to different approaches and techniques. In this section, we will describe some of the
most used map representations. Grid map representations are first described. Those kind
of maps are very close to the human idea of a spatial representation, as they describe the
world with a bidimensional or tridimensional grid, whose cells keep the probability of being
occupied. They are very useful for accurate localization and path planning in presence of
obstacles. However, they also require high memory occupation. Landmark maps describe the
world with a set of landmarks, thus being less informative and requiring less memory. On
the other hand, topological representations are described. While very compact, those repre-
sentation are not suitable for accurate low level tasks, as they often describe an environment
in terms of places and connections. Their main purpose is to perform qualitative reasoning
about the environment. Lately, several efforts have been profused toward the integration of
the previous representations. This integration seems to inherit good qualities from both, thus
being very promising.

3.2.1 Landmark Maps

Landmark maps describe the world through as a set of spatially located features [Castellanos
et al., 1999],[Montemerlo et al., 2002]. One of the advantage of this kind of representation
is its compactness, which makes them suitable for describing very large planar and 3D envi-
ronments. More formally, a map instance is represented by a vector in the space Rl·n, where
l is the dimension of the single landmark and n is the number of landmarks.

If we assume that the noise affecting the system is Gaussian, the posterior over the map
can be easily modeled as multivariate Gaussian distribution. Keeping a fully correlated dis-
tribution among the landmark locations is possible simply through a covariance matrix. The
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Figure 3.1: Example of a landmark map. The picture shows the map of the Victoria Park

dataset. The cyan dots represented the features while the blue line the robot path. Courtesy

of Juan Nieto.

blocks along the diagonal of the matrix express the absolute uncertainties for the single land-
mark, while the off-diagonal blocks express the relationships among different landmarks.
Moreover, assuming the system to be linear, the straightforward Kalman Filter solution is
also the optimal one.

Despite these clear advantages, the use of landmark maps presents some drawbacks. Sum-
marizing all of the knowledge about the environment in a set of points can discard useful
information that can be gathered by the today accurate sensors. In order to operate with a
landmark map some feature extraction algorithm, is needed. Usually, feature extraction al-
gorithms assume some structure in the environment. For this reason environments for which
some a priori knowledge is missing, can not be represented by landmark maps. Moreover,
this features have to be uniquely identified. This problem, known as perceptual aliasing or
data association, has to be explicitly addressed, as wrong associations have been proved to
yield estimation divergence.

The process of feature extraction differs significantly according to the sensor used. On
one side, when using sonar and laser range-finders, there are mainly two classes of fea-
tures: corners and lines. Extraction is carried on by using different algorithms: split and
merge [Borges, 2000], Hough transform [Atiquzzaman & Akhtar, 1994] , RANSAC [Fis-
chler & Bolles, 1981]. On the other end, when using camera sensors, feature are extracted by
exploiting appearance information (mainly color and luminance) Features are represented as
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Figure 3.2: Example of grid map. The picture shows the map of the ACES data set. The gray

value represent the probability of a cell of being occupied. The darker a cell is, the higher is

the probability.

points and extracted using different algorithms: Harris [Harris & Stephens, 1988], STK [Shi
& Tomasi, 1994], SIFT [Lowe, 2004]. Moreover, single cameras provide only bearing infor-
mation, thus careful initialization procedures are needed [Montiel, Civera, & Davison, 2006]

An example of landmark map is shown in Figure 3.1.

3.2.2 Grid Maps

When a fine grained resolution is needed, typical for accurate path-planning, or environments
are structure-free, landmarks map can not be informative enough. In these situations, the use
of a dense map is handful. Dense maps can be thought as a two or three dimensional grid,
whose cells keep the probability of being occupied or free. Algorithms for building this
kind of maps relies on the Occupancy Grid framework of Moravec and Elfes [Elfes, 1989].
Another approach, mostly used with high accuracy sensors like laser scanner, is represented
by the reflection grid. Both algorithm are explained in details in Section 2.2.

One of the main characteristic of this kind of data structure is the capability of repre-
senting unstructured environments, and that the accuracy can be tuned by setting different
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Figure 3.3: Example of a semantic/topological map. The picture shows a typical indoor en-

vironment. The blue nodes represent rooms in the environment, while the red ones represent

the corridors. The edges represent the connections among the different rooms. Courtesy of

Oscar Martinez Mozos.

grid resolution. Moreover, there is no need to use a feature extraction algorithm, making the
perceptual aliasing problem easier and the overall algorithm more robust.

However, cells are considered independent, so inter-cell relations cannot be expressed.
This poses limitations when dealing with dynamic environments, as groups of cells tend to
move together. Another disadvantage of the grid maps are the memory requirements. Storing
a grid map requires an amount of memory which grows with the area of the environment, and
the desired resolution. This drawback becomes a problem when multiple grids are used for
representing a sampled probability distribution over maps.

Dense maps are usually built using sonar or laser range finders. This is due to the need
of using both range and bearing information. However, algorithm using stereo cameras have
been developed lately. One example of this is the work of Sim and Little [Sim et al., 2006].

An example of grid map is given in Figure 3.2.

3.2.3 Topological Maps
A topological map represents the environment as a graph. The nodes of the graph represent
places in the environment, while the edges represent relationships among places [Kuipers &
Byun, 1991; Mataric, 1992]. As opposed to the metric representation, within a pure topo-
logical map the spatial meaning of nodes and relationships is lost. This makes this kind
of representation less sensitive to scale problems affecting metric approaches: as the size of
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Figure 3.4: Example of a hybrid map. The picture shows the map of the ACES data set.

The graph nodes represent the topologycal skeleton, while the small local maps represent its

metrical part.

the environment grows the size of a metric maps describing it grows, while the size of the
corresponding topological map remains the same.

The precise definition of a topological map is ontology dependent: the meanings of both
“place” and “relationship” have to be specified. Different ontologies lead to different topo-
logical map definitions. The compactness of topological maps allows to perform high level
reasoning about such a representation. Despite their attractiveness, it is difficult to use these
representations without any kind of metric information. This kind of representation is often
connected with some semantic interpretation of the world having the different places grouped
into different classes, e.g. corridors, rooms and so on.

An example of semantic/topological map is given in Figure 3.3

3.2.4 Hybrid Maps

Hybrid maps try to get the best out of both metric and topological maps. The relationships
among different parts of the environment are often local: elements of the environment that are
close are highly correlated, while elements that are far away are weakly correlated. Hybrid
maps try to capture this feature. The environment is described as a set of small local maps
(patches), while the global constraints among them are retained in a global graph. This kind
of representation is also called hierarchical map, as this decoupling can also seen as a two-
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layer map: the lower level stores the metrical and local information, the higher level stores the
topological and global one. In principle, this hierarchicalization can be repeated for several
levels, but most of the approaches in the literature use only two layers.

Within a two layer hybrid map the global map uses a graph for keeping the topological
structure of the local maps locations, and for constructing a local view of the world in the
neighborhood of the robot. Bosse et al. [Bosse et al., 2003] have proposed a landmark based
hierarchical representation in their Atlas framework. Howard et al. [Howard, 2004] proposed
a hierarchical representation in which the landmarks are small grid maps, arranged in a graph
having a precise spatial meaning. Observe that such a graph is substantially different from
a topological representation, since it expresses in a compact way relationships among metric
entities while, in a topological map, the metric meaning is lost.

An example of an hybrid map is given in Figure 3.4

Delayed State Representation

Lately, the Delayed State or View Based Framework has become more and more popular. In
contrast to conventional feature based approaches, the world is represented by a series of past
vehicle poses with associated uncertainties. Previous observations, whether 2D or 3D laser
based, or visual, are then associated to each pose. These can then be referred back, compared
and perhaps registered, to other potential constraints on the global map of vehicle poses. This
is most commonly done immediately after odometry-based state augmentation, but is also
essential when revisiting previously traversed areas for loop closing. The use of Delayed
State representation decouples two important aspects. Focusing on robot poses, it is possible
to express some process properties abstracting on the real map representation, as soon as
it can provide pose constraints. This offers natural ways of expressing a map hierarchy.
The local part of the hierarchy focuses on map representations dealing with different sensors
types. The global part is expressed as a network of poses, thus dealing with problems of
global consistency.

3.3 Techniques

In this section, we discuss the diverse SLAM approaches developed in the past years. We
start from a widely used class of metric mappers: the incremental Maximum Likelihood (e.g.
scan matching, visual odometry) approaches. Subsequently, we introduce the optimization
based approaches, developed for recovering a globally consistent map from a set of relations
among parts of the environment. Furthermore, we illustrate an Expectation Maximization
based algorithm which has been introduced in the attempt of lessening the local minima
problems, which arise when using optimization techniques.

Solutions based on filtering techniques will be then presented. We start describing the
Kalman filter, which has been widely used in landmark based SLAM, in Subsection 3.3.4.
We then describe approaches based on its dual, the information filter, in Subsection 3.3.5.
Subsection 3.3.6 introduces the Rao-Blackwellized particle filter based approaches, which
have been shown to be effective for dealing with complex multi-modal map/pose posteriors.

In Subsection 3.3.7 we describe some approaches to the topological SLAM problem. In
this setting, only a qualitative estimation of the environment is performed. Geometric an
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metric information are discarded and the main focus is estimating the connectivity of diverse
places in the world.

We conclude with the hybrid approaches which update a hierarchical representation com-
bining both a metric and a topological aspect.

3.3.1 Incremental Maximum Likelihood

Popular approaches to on-line mapping are the Incremental Maximum Likelihood (ML) tech-
niques [Lu & Milios, 1994; Gutmann, 1996; Biber & Strasser, 2003]. The general idea of
these approaches can be summarized as follows. At any point t − 1 in time, the robot is
given an estimate of its pose x̂t−1 and a map m̂(x̂1:t−1, z1:t−1), constructed using the incre-
mental trajectory estimate x̂1:t−1. After the robot moves further on and after taking a new
measurement zt, the robot determines the most likely new pose x̂t as

x̂t = argmax
xt

[p(zt | xt, m̂(x̂1:t−1, z1:t−1)) · p(xt | ut−1, x̂t−1)] . (3.2)

The idea is to trade off the consistency of the measurement with the map (first term on the
right-hand side in Equation 3.2) and the consistency of the new pose with the control action
and the previous pose (second term on the right-hand side in Equation 3.2). The map is then
extended by the new measurement zt, using the pose x̂t as the pose at which this measurement
was taken. The key limitation of these approaches lies in the greedy maximization step. Once
the location xt at time t has been computed it is not revised afterward so that the robot cannot
recover from errors affecting the past pose from which the map is computed (registration
errors). Although they have been proved to be able to correct enormous errors in odometry,
the resulting maps are often globally inconsistent, as local errors in the maximization are not
considered, and can grow unbounded over time.

Observe that the definition of Maximum Likelihood approaches given in this section
refers to incremental methods. Incremental ML methods substantially differ from Global
ML approaches which attempt to find the robot trajectory which maximizes the likelihoods
of all the observations and the odometry measurements. A global maximization is usually
achieved using optimization based techniques (Subsection 3.3.2).

In general, the more accurate is the solution of Equation 3.2, the more accurate the map
generated by the ML algorithm will be. The appreciable quality of generating locally consis-
tent maps makes the Maximum Likelihood approaches suitable to be used as building blocks
of more complex algorithms. These considerations motivate the research in developing in-
creasingly efficient algorithms.

Techniques in this field mainly differ according to the sensor used. When a laser range
finder is used, they are called scan matching techniques [Gutmann, Weigel, & Nebel, 2001;
Hähnel, Schulz, & Burgard, 2002a; Röfer, 2002; Weiß, Wetzler, & von Puttkamer, 1994].
A common technique in the context of laser range scans is the iterative-closest-point (ICP)
algorithm [Besl & MacKay, 1992; Zhang, 1994]. When, insted, the sensor used is a camera,
they are called visual odometry techniques [Nister, Naroditsky, & Bergen, 2004; Ni & Del-
laert, 2006; Agrawal & Konolige, 2006; Cheng, Maimone, & Matthies, 2005] and are mainly
based on optical flow ideas [Horn & Schunck, 1992].
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Scan Matching

The scan matching problem can be expressed as: given two sets of 2D data (i.e. a reference
scan, s and a current scan, g), determine a 2D rigid motion (a translation T and a rotation
Rφ) that makes the scan data overlapping the reference data.

In typical scenarios, however, the perfect overlap is not possible, thus the objective be-
comes to transform s in such a way that the distance between the points in g and the trans-
formed points in s is minimized

Rφ, T = arg min
Rφ,T

∑
si,gi∈C

‖T +Rφsi − gi‖2 . (3.3)

where si, gi ∈ C is a pair of corresponding points in the two scans.
If the environment is rich in features that are invariant in rotation and translation (corners,

straight walls) [Gutmann, 1996] and these are preserved notwithstanding the sensor noise,
then it is possible to extract them and find a solution in linear time with respect to the number
of points in the scan [Lingemann et al., 2004]. This approach has been proved to be efficient
and robust, when sufficient features are present in the environment.

In unstructured environments with relatively low noise, it is possible to employ algo-
rithms of the ICP family [Zhang, 1994] that do not assume the existence of features. These
are based on a two-step process: first, a series of heuristic correspondences between points in
the two scans are established. Then a roto-translation that approximately satisfies the series
of constraints is found. The solution is obtained by iteratively executing the two steps until
the error drops below a given threshold. The first approach to be used in robotics is the work
of Lu and Milios [Lu & Milios, 1994]. They combine the normal Nearest Neighbor search
of ICP with angular constraints in the Iterative Dual Correspondence (IDC). The algorithm
uses two types of correspondences (translation and rotation) and at each iteration performs
two optimizations. They also proposes the interpolation of lines between laser points to im-
prove robustness for large transformations. After their work, Pfister et al. [Pfister et al., 2002]
propose a weighted algorithm, where the influence of each point in the error formulation is
weighted according to uncertainty like measurement noise, sensor incidence angle and cor-
respondence error. This error is then minimized using numerical optimization methods. An
improved metric is introduced by Minguez et al. [Minguez, Montesano, & Lamiraux, 2006].
The correspondences between scans are established with this measure and the minimization
of the error is also carried out in terms of this distance. As a result, the translation and rotation
are compensated simultaneously. Censi [Censi, 2008] introduced a point to line metric and an
exact closed-form for minimizing it. The resulting algorithm has some interesting properties:
it converges quadratically, and in a finite number of steps.

Other methods do not require the establishment of any feature-to-feature or point-to-point
correspondence but they search in the solution space. In [Hähnel, Schulz, & Burgard, 2002b]
the solution is searched by performing gradient descent on a score function. Such a function
is built by convolving the reference scan with a Gaussian kernel and then correlating it with
the sensor scan. This approach has been subsequently refined in [Biber & Strasser, 2003]
by defining a closed form for a potential function that can be minimized using the Newton
algorithm. These approaches require a number of iterations that depends on the input config-
uration and the entity of the error. In [Weiß, Wetzler, & von Puttkamer, 1994] a correlation
based approach that is well suited in polygonal environments is presented. The orientation
of each scan point is found and the circular histogram of these is build. Then the rotation is



30 3. A Taxonomy of Simultaneous Localization and Mapping

found by correlating the normal histograms. This can be done since the relative angles of a set
of lines do not change when changing the reference system. Once the heading is known, the
translational component of the displacement is recovered by determining pair of non parallel
lines in the reference scan, and computing the translational error among the normal directions
of those lines. Censi et al [Censi, Iocchi, & Grisetti, 2005] proposed a matching technique
based on the Hough transform (HT). Within the Hough space the search of the rotation and
the translation which maximize the overlapping can be decoupled. This way the complexity
of the matching process which requires to search in a 3D space is decoupled in a sequence of
mono-dimensional searches.

Finally, some researches focused on estimating the uncertainty of the scan matching al-
gorithm. The most rigorous study of the covariance estimation problem has been developed
by Bengtsson et. al [Bengtsson & Baerveldt, 2001]: nevertheless, the two methods proposed
there (the Hessian method and the Offline method) have some drawbacks. The closed-form
Hessian method over-estimates the covariance in some cases. The Offline method gives rea-
sonable results but cannot be used online, as it is based on a computationally expensive pro-
cedure. Censi [Censi, 2007a] presented a method for estimating the covariance of the ICP
algorithm, based on the analysis of the error function being minimized. He showed that un-
derconstrained cases can be detected by examining the Fishers information matrix. In such
cases the proposed method accounts for the errors on the observable manifold.

Visual Odometry

Visual odometry estimates a continuous camera trajectory by examining the changes motion
induces on the images. There are two main classes of techniques

• Dense algorithms, based on optical flow

• Sparse algorithms, based on structure from motion

Dense motion algorithms, exploiting the optical flow, track the image motion of bright-
ness patterns over the full image [Horn & Schunck, 1992] Campbell et al. [Campbell, 2004]
presents a visual odometry system that uses optical flow and a planar world assumption to
obtain relative poses from a monocular camera. In the work of Morency and Gupta [Morency
& Gupta, 2003] the relative transformation between two stereo image pairs is estimated using
a hybrid registration algorithm which combines the robustness of multi-scale feature tracking
for large movements and the accuracy of 3D normal flow constraints. Their hybrid technique
takes advantage of depth information available from the stereo camera which makes the ap-
proach less sensitive to lighting variations. Similarly, Comport et al. [Comport, Malis, &
Rives, 2007] use a dense minimization approach which directly exploits all gray-scale infor-
mation available within the stereo pair (or stereo region) leading to very robust and precise
results. Metric 3D structure constraints are imposed by consistently warping corresponding
stereo images to generate novel viewpoints at each stereo acquisition. An iterative non-linear
trajectory estimation approach is formulated based on a quadrifocal relationship between the
image intensities within adjacent views of the stereo pair. A robust M-estimation technique
is used to reject outliers corresponding to moving objects within the scene or other outliers
such as occlusions and illumination changes.

Feature tracking methods track a small number of features from image to image. The
use of features reduces the complexity of dealing with image data and makes realtime perfor-
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mance more realistic. SfM systems are a type of feature tracking method that use structure-
from-motion methods to estimate the relative position of two or more camera frames. These
feature points are triangulated and then an absolute orientation step is used to estimate the
3D motion. The use of 3D point correspondences to obtain the motion suffers from a ma-
jor drawback triangulations are much more uncertain in the depth direction. Therefore,
these 3D points have non isotropic noise, and a 3D alignment between small sets of such
3D points gives poor motion estimates. To take into account this anisotropic noise in the 3D
coordinates, Matei and Meer [Matei & Meer, 1999] presented an approach based on a tech-
nique from statistics called bootstrap to estimate the covariance for the 3D points and solve
a heteroscedastic, multivariate errors in variables regression problem. Nister et al. [Nister,
Naroditsky, & Bergen, 2004] propose a method that proceeds by triangulating the feature
points and then tracking them over time. The 3-point algorithm for single camera pose is
then used to estimate the motion of the left camera. Each triplet of triangulated 3D points is
used to generate a hypothesis in the RANSAC [Fischler & Bolles, 1981] framework. This
hypothesis is then scored using pixel reprojections in both the left and the right cameras.
Ni and Dellaert [Ni & Dellaert, 2006] present an approach of calculating visual odometry
for outdoor robots equipped with a stereo rig. Instead of the typical feature matching or
tracking, they use an improved stereo-tracking method that simultaneously decides the fea-
ture displacement in both cameras. Based on the matched features, a three-point algorithm
for the resulting quadrifocal setting is carried out in a RANSAC framework to recover the
unknown odometry. Agrawal and Konolige [Agrawal & Konolige, 2006] rely on stereo vi-
sion to robustly estimate frame-to-frame motion in real time. The motion estimation problem
is formulated efficiently in the disparity space and results in accurate and robust estimates
of the motion even for a small-baseline configuration. Inertial measurements are used to
fill in motion estimates when visual odometry fails. This incremental motion is then fused
with a low-cost GPS sensor using a Kalman Filter to prevent long-term drifts. Levin and
Szeliski [Levin & Szeliski, 2004] study how estimates of ego-motion based on feature track-
ing can be improved using a rough (low accuracy) map of where the observer has been. Since
absolute estimates of camera position are unreliable, they use stable local information such
as change in orientation to perform the alignment. The final alignment is computed using a
graphical model whose MAP estimate is inferred using loopy belief propagation.

3.3.2 Optimization Based Techniques

The main idea of this kind of approaches is to construct from the sensing history a graph
of relations, in which each robot pose is a node. A relation among the pose xi and the
pose xj holds if there is some landmark z that has been observed from both xi and xj . Let
z = f(x, z′) be a function that maps the local perception of a landmark to the global frame,
according to the pose x. For instance, if z′ are the coordinates of the landmark, expressed
in the robot centered frame, f(x, z′) can be the coordinate transformation which returns the
global coordinate of z, given the robot pose.

Given a landmark zl seen from both xi and xj we can define the following error term:

eijl = (f(xi, zli)− f(x,zlj))
T Σ−1

lij (f(xi, zli)− f(xj , zlj)) (3.4)

Here Σ−1
lij is a positive semidefinite matrix that captures the strength of the constraint.
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The total error of the system is the sum of the errors affecting each pair of poses < i, j >
for which a common landmark l has been seen. It can be computed as

E(x0, . . . , xt) =
∑
i,j,l

eijl. (3.5)

Now the problem is how to minimize the error expressed by Equation 3.5, being in general
non linear and high dimensional. To this end several techniques have been proposed.

The original formulation of Lu and Milios [Lu & Milios, 1997a] minimizes Equation 3.5
using an iterative approach. At each step the original system is linearized around the previous
iteration guess, and the corresponding system is solved. The termination occurs when the
error is below a given threshold. Under the assumption that the correct solution is close to
the starting point, a popular approach consists in computing the first order Taylor expansion
of the error function around the starting position x0:

f(x, z′) ' f(x0, z) + ∇xf |x0
(x− x0)

With this assumption Equation 3.5 translates in a quadratic form, whose maximization is
straightforward. The linearized system size grows linearly with the number of poses, thus
requiring a time quadratic in the number of landmarks for being solved. However, if the
underlying problem is not linear, the procedure has to be iterated several times, as explained
by Lu and Milios [Lu & Milios, 1997a].

Howard et al. [Howard, Mataric, & Sukhatme, 2001a] proposed to use relaxation for
minimizing the error energy of the SLAM equivalent mechanical system. Equation 3.5 can
be seen as the description of a set of rigid bodies interconnected with springs and damps. At
the initial instant the system is supposed not to be at equilibrium. However the equilibrium
can be reached by moving in turn each of the rigid bodies (robot poses), according to the
force that acts on it fi = ∇xiei. Repeating this procedure for all of the masses in the
network, leads to a lower energy state, and therefore to a minimal error configuration. This
procedure requires a quadratic number of iterations, for reducing the error term of a constant
factor; therefore it poses some computational problem. Frese et al. [Frese & Duckett, 2003],
proposed a modified version of the relaxation algorithm, that relies on a multi-resolution
approach that is able to obtain an approximated solution in linear time (with respect to the
number of nodes in the network).

Dellaert [Dellaert, 2005b] considered the optimization problem in terms of information
smoothing. The minimization is viewed as the solution of a Least Square Problems, which
is addressed using the QR factorization. As stated in his paper, exploiting the structure of
SLAM problem the resulting matrices are exactly sparse, thus yielding to an efficient batch
algorithm. Kaess et al. [Kaess, Ranganathan, & Dellaert, 2007] extended those ideas in an
incremental information smoothing algorithm. In that work, they provided a full solution to
SLAM, combining incremental smoothing with data association.

Olson et al. [Olson, Leonard, & Teller, 2006] addressed the problem by using gradient
descent on a network described in a form which allows for efficient analytical updates. The
method was further improved by Grisetti et al. [Grisetti et al., 2008]. The authors use a dif-
ferent parametrization of the nodes in the network that takes into account the topology of the
environment, resulting in a faster convergence. Graphical SLAM [Folkesson & Christensen,
2004] builds a graphical model of the smoothing problem. It optimizes the graph by defining
an energy function for each node and then minimizing this energy.
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Whereas these methods mainly focus on estimating the most likely configuration of the
map, they leave open how to estimate the uncertainty of the solution. To the best of our
knowledge, the only approach which computes both the ML configuration of the nodes ant
their marginal distribution has been proposed by Ranganathan et al. [Ranganathan, Kaess,
& Dellaert, 2007]. They model the smoothing problem as a Gaussian Markov random field
(GMRF) and use loopy belief propagation on this model. The covariances computed with
their algorithm, however, are either overconfident, if using loopy belief propagation, or too
conservative, if using loopy belief propagation over a spanning tree. An exact algorithm
for those covariances can be found in the work of Kaess et. al [Kaess, Ranganathan, &
Dellaert, 2007]. Their algorithm, however, is guaranteed to be efficient only in the case of
band-diagonal matrices, and can be more expensive for general sparsity patterns.

In general, optimization based approaches represent an attractive choice for solving the
problem, if associations among landmarks or among robot poses are known, since they are
able to correct the pose in the past. However, the complexity which depends on the number of
robot poses to optimize can make this methods not suitable for real time applications. More-
over, the problem of how to correctly determine the relations among poses is not straightfor-
ward.

3.3.3 Expectation Maximization
Expectation Maximization algorithm can also be considered as an optimization algorithm.
Thrun et al. [Thrun, Fox, & Burgard, 1998] propose a probabilistic formalization of the
SLAM problem, which does not addresses the data association. The mapping problem is for-
mulated by exploiting the static world assumption, in terms of the joint belief over positions
and maps:

p(xt,m) = ηtp(zt|xt,m)
∫
p(xt|ut−1, xt−1,m)p(xt−1,m)dxt−1 (3.6)

which involves the maximization of a function in a dim(m) + dim(x) space, which is a hard
problem. By managing Equation 3.6 it is possible to obtain the posterior in a closed and
factored form, suitable for the application of EM algorithm:

p(xt,m) = ηtp(m)
∫ ∫

· · ·
∫ t∏

τ=0

p(zt|xτ ,m)
t∏

τ=1

∫
p(xτ |uτ−1, xτ−1,m)dx1dx2 · · · dxt

(3.7)
By considering the robot path x0:t as missing variables it is possible to maximize Equa-

tion 3.7, through the Expectation Maximization algorithm. The expectation step computes
the likelihood of a robot path given the sensor readings and a known map, while the max-
imization step finds the optimal map given the likelihood of the path and the previous step
map estimate. This is a very difficult problem, but in [Thrun, Fox, & Burgard, 1998] it has
been straightforwardly solved by considering the cells of the map as independent. The occu-
pancy probability of a cell is evaluated according to a frequency based update rule, and the
pose likelihood. The EM approach in mapping and localization has shown to be very robust
and able to map environments that were previously considered hard; its main problem is the
computational complexity that grows with the length of the path, for the E steps, and with the
size of the environment for convergence. Moreover this approach has the same weakness as
the underlying estimation algorithm. Since EM performs the estimate through hill climbing
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the posterior over maps and poses, if the initial estimate is not good enough, it can converge
to a wrong local minima.

3.3.4 Kalman Filter
The first attempt to solve the SLAM problem was performed using the Extended Kalman
Filter. The use of EKF imposes the following strong assumptions:

• the dynamic of the robot has to be linearizable

• the state distribution and the measurement error are assumed to be Gaussian.

• the map is represented by a set of distinguishable landmarks: m1, . . . ,mk, whose un-
certainty is described through a Gaussian.

The modeled system state can be partitioned in two components: the robot location x and
the absolute landmarks position. The observed variables z = (m1 . . . ,mk)T are the locations
of the landmarks with respect to the robot reference system. In general, the system state
dimension grows as the system evolves, due to the incorporation of new landmarks. In order
to work correctly, Kalman Filter based SLAM requires all those hypotheses to hold. Due
to its simple formulation the structure of the solutions of the KF based approaches has been
deeply investigated. Newmann et al. [Newmann, 1999; Gamini Dissanayake et al., 2001]
gave a proof of the linear SLAM problem convergence, under known data associations. In
practice the error estimate is bounded by the initial position error and the first landmark sight.

Despite these ideal characteristics, using an EKF for solving the SLAM problem presents
some shortcomings when the EKF hypotheses fail, or when the correspondences are not
known. In this second case, it is possible to overcome the problem by using some heuristic
such as the nearest neighbor principle. However, in environments crowded of landmarks such
a heuristic, is prone to failure, and can cause the filter to converge to the wrong solution.

More robust data association strategies have been proposed for avoiding the overconfi-
dence that shows up with the nearest neighbor, like the Joint Data Association by Neira et
al. [Neira & Tardós, 2001]. Hähnel et al. [Haehnel et al., 2003]. proposed a theoretical ap-
proach which is able to track several map hypotheses using an association tree. Each node in
the tree represents an association hypotheses, while the leaves are the candidate maps. The
tree grows as the robot moves, by considering only the most likely node. When a failure is
detected, a backtracking occurs in order to consider a different sequence of associations that
makes the observation consistent with respect to the map. However, the necessary expansions
of this tree can make the approach unfeasible for real-time operation.

However, even if a robust data association is available, the problem of the landmark maps
still exists. A landmark representation requires the ability to detect a series of spatially lo-
cated features. This assumption holds if some knowledge about the environment is a priori
available, and some feature extractor is used. Alternatively, the environment has to be struc-
tured by the insertion of artificial landmarks.

Frese et al. [Frese & Hirzinger, 2001] made an analysis of the SLAM process, and
showed that the linear assumption in the Kalman filter introduces systematic errors. Julier
and Uhlmann [Julier, Uhlmann, & Durrant-Whyte, 1995] showed how to lessen the effects of
the nonlinearities in the motion model through the use of the UKF.

One of the major problems of this kind of algorithm seems to be the computational com-
plexity, which depends on the dimension of the system state space to track. Such a dimension
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is proportional to the number of landmarks n, and the filter requires O(n3) for each update.
This problem has been addressed by several approximated approaches, whose key concept is
to exploit the weak dependence among landmarks far from each other. In the following of
this section, some of the most common techniques are discussed.

3.3.5 Information Filter
In order to reduce the complexity of Kalman Filter based SLAM, some authors have inves-
tigated the use of its dual: the information filter. The key idea of this family of approaches
can be stated as follows: if the covariance matrix Σ of a system can be dense, the information
matrix Λ = Σ−1 may be sparse, or its entries can be small. When such a matrix is sparse,
using an information filter the predictions and the updates can be done in linear time. In
a work by Thrun [Thrun et al., 2004], it is proposed to approximate the information filter
solution, for speeding up the update. The key idea can be stated as follows: if the covari-
ance matrix Σ of a system can be dense, the information matrix Λ = Σ−1 may be sparse,
or its entries can be small. When such a matrix is sparse, using an information filter, the
predictions and the updates can be done in linear time. At each time SEIF approximates the
small entries in Λ with 0, and obtains a constant time approximated filter update. It is worth
to observe that arbitrarily changing the entries of the precision matrix is not trivial because
the resulting matrix must be still positive semidefinite. The solution adopted by SEIF is to
approximate the map by taking a constant number of gradient descent steps in the probability
density defined by Λ, and to approximate the marginal landmark covariances needed for data
association using the conditional covariance. Subsequently, Eustice et al. [Eustice, Walter, &
Leonard, 2005] computed the error boundaries introduced by SEIFs during the sparsification
operation. In a more recent work, Eustice et al. [Walter, Eustice, & Leonard, 2007] showed
that the information matrix is exactly sparse if a delayed state representation is used.

However, in spite of reduced time complexity, information filter approaches suffer from
representational issues. Recovering a map requires inverting Λ, as the mean is encoded into
the information vector η = Λµ. This represents a problem, not only because the map is
inaccessible, but also because it is needed for system linearization. Thrun solution consists to
approximate the map, by taking a constant number of gradient descent steps in the probability
density, and to approximate the marginal landmark covariances needed for data association
using the conditional covariance. Eustice, instead, solves a sparse linear systems by using the
Conjugate Gradients method.

A work which is in between the Kalman filter and the information filter is presented
by Paskin et al. [Paskin, 2003], where the use of graphical models for performing selective
updates on landmark submaps is proposed. The graphical models can be seen as graphs in
which each node represents a state variable (a landmark or a robot pose). Edges among nodes
express conditional dependence among them. The observations affect the graphical model,
resulting in the addition of nodes and edges. Marginalizing out a variable (for instance a past
time position), results in the suppression of a node in the graph and in the introduction of
additional edges among the neighbors of the suppressed node. Within the Thin Junction Tree
framework the statistical parameters of the estimate are described through the use of a tree
view of the graph. The complexity of the updates is bound through the ”thinning” operation
that prunes connections in the tree associated to weakly dependent variables. The behavior
of this operation is similar to the sparsification introduced by the SEIF framework. Although
the description of the involved variables through trees makes it difficult to represent loop
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situations, experimental results have shown the effectiveness of the approach.

3.3.6 Rao-Blackwellized Particle Filters
In a work by Murphy [Murphy, 1999] Rao-Blackwellized particle filters (RBPF) have been
introduced as an effective means to solve SLAM problem, due to their ability of tracking
multiple map and robot pose hypotheses. Each particle in a RBPF represents a possible
robot trajectory and a map. The framework has been subsequently extended by Montemerlo
et al. [Montemerlo et al., 2002; Montemerlo & Thrun, 2003] for approaching the SLAM
problem with landmark maps.

For converging to the correct solution, a RBPF-based SLAM algorithm, requires that at
least one particle carries a path close enough to the true one. Based on this consideration
several authors conjuncture that the number of particles required for building a consistent
map grows exponentially with the size of the largest unknown cyclic traveled path [Frese
& Hirzinger, 2001; Paskin, 2003]. In the context of grid maps, RBPF have been also used
by Eliazar and Parr [Eliazar & Parr, 2003], Hähnel et al. [Hähnel et al., 2003a] and Grisetti
et al. [Grisetti, Stachniss, & Burgard, 2005] for building grid maps using a mobile robot
equipped with a laser range finder. Whereas the first work describes a memory efficient map
representation that allows to represent a high number of map samples, the second presents an
improved motion model that reduces the number of required particles.

In practice, a Rao-Blackwellized particle filter for SLAM is a particle filter in which each
particle represents a possible robot trajectory, and the map obtained from the integration of
the sensor readings along that trajectory. A deeper explanation of the Rao-Blackwellized
framework for mapping is given in Chapter 4.

3.3.7 Topological Approaches
Topological approaches update a graph representation of the environment. Such a family of
techniques is suitable for environments in which it is easy to define the concept of “place”.
Estimating a graph rather than a complex metric structure has significant computational ad-
vantage. Moreover, it is possible to perform high level reasoning on estimate.

Choset et al. [Choset, , & J., 2000] proposed to use the Voronoi graph as a topological
representation. A place is characterized by a node of such a graph, and the robot localizes
itself in the Voronoi nodes. Kuipers et al.[Kuipers & Byun, 1991] proposed the Spatial Se-
mantic Hierarchy, for representing several models of spatial knowledge within a hierarchy of
ontologically different layers: from the robot control level (path planning), to the topological
reasoning level. The possible topological maps are constructed by combining the expected
outcome of the actions, and pruned by the observations of “places”. The possible topologies
can be arranged into a tree. By enforcing additional constraints on the generated graphs the
feasible solutions can be pruned. Savelli et al. [Savelli & Kuipers, 2004] proposed the use
of planar constraints in the graph generation that substantially reduces the number of feasible
hypotheses at each step.

Martinez Mozos and Burgard [Mozos & Burgard, 2006] present an approach to create
topological maps from geometric maps. The approach utilizes AdaBoost, a supervised learn-
ing algorithm, to classify each point of the geometric map into semantic classes. They then
apply a segmentation procedure based on probabilistic relaxation labeling on the resulting
classifications to eliminate errors. The topological graph is then extracted from the individual
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different regions and their connections. In this way, they obtain a topological map in the form
of a graph, in which each node indicates a region in the environment with its corresponding
semantic class (e.g., corridor, or room) and the edges indicate the connections between them.

In his PhD thesis, Ranganathan [Ranganathan, 2008] presents the concept of Probabilistic
Topological Maps (PTMs), a sample based representation that approximates the posterior dis-
tribution over topologies given available sensor measurements. In [Ranganathan, Menegatti,
& Dellaert, 2006] it has showed that the PTM can be obtained by performing Bayesian in-
ference over the space of all possible topologies and provides a systematic solution to the
problem of perceptual aliasing in the domain of topological mapping. In [Ranganathan &
Dellaert, 2006] they propose a particle filtering algorithm for topological mapping based on
the PTM framework using a laser scanner as sensor. The use of particle filters makes our
algorithm incremental, as opposed to their previous work on PTMs that used Markov Chain
Monte Carlo (MCMC).

Dudek et al. [Dudek et al., 1991] address the problem of robotic exploration of a graph-
like world, where no distance or orientation metric is assumed of the world. The robot cannot
measure distances, and it does not have a compass. They demonstrate that this exploration
problem is unsolvable in general without markers.

3.3.8 Hybrid Approaches
The techniques described so far rely on the use of a single representation and a single esti-
mation algorithm. Some good results have been obtained by using hierarchical map repre-
sentations and combining different estimation algorithms. For this reason in the rest of this
document we refer to this family of techniques also as ”integrated” approaches.

In the works by Gutmann et al. [Gutmann & Konolige, 1999] and Thrun et al. [Thrun,
Burgard, & Fox, 2000], effective ways for integrating an optimization method with a max-
imum likelihood based approach are proposed. The core idea is to carry on the estimate
using a scan matching procedure, and to use a Bayesian estimator to track the robot pose
uncertainty.

In [Gutmann & Konolige, 1999] a Kalman filter is used for estimating the robot pose. As
long as the robot moves through the environment, a topological map is built according to the
scan matcher results. Possible loop closures are detected by checking for a possible matching
of a local map within the previously built map. Such a local map is constructed by running
a scan matching algorithm on the most recent scans. The candidate search area consists in
the locations covered by the uncertainty ellipses resulting from the Kalman filter. When a
matching that can close the loop is found, an optimization procedure (see Subsection 3.3.2)
is run for all the poses in the loop, in this way a consistent estimate is obtained.

In [Thrun, Burgard, & Fox, 2000] the map is represented by storing the acquired laser
scans, and the robot path. This representation can be seen as a patch representation in which
each patch contains a single scan, while the robot trajectory is the graph of relations. A single
map estimate is built through a scan matcher. The robot pose is estimated through a particle
based localization algorithm. The effect of a loop closure is that the robot localizes itself
in a previously seen part of the environment. This introduces a new constraint among robot
locations in the robot path. At this point the trajectory along the loop is revised, enforcing the
consistency with the newly introduced loop constraint. The backward revision is performed
by uniformly distributing the error along the loop, and refined by a gradient descent based
search.
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These methods combine both the advantages of a maximum likelihood approach, and
an optimization method. They are extremely fast in the average case, while being able to
effectively close loops. The shortcoming of these algorithms is that they are able to track
only one topological hypothesis, that if wrong, leads to an incorrect map estimate.

Howard et al. [Howard, 2004] proposed the use of a hierarchical metrical map, in which
the loop closures are delayed. The idea is to represent a global map as a set of patches. These
patches are arranged according to a graph, while the loop closures can be indefinitely delayed.
At each point in time the robot operates in a part of the environment, where the map is locally
consistent. This is achieved by considering only the patches which are reachable through a
fixed-depth breadth-first visit of the global graph, starting from the patch in which the robot is
located. The graph topology reflects the time order of the perceptions about different parts of
the environment. When the robot moves, the graph node in which the robot is located in the
graph is updated accordingly. If a loop closure is assessed, the conditions of the loop closure
are propagated along the graph, and a global map is obtained by a non linear optimization.

Bosse et al. [Bosse et al., 2003] presented the Altlas Framework for achieving a globally
consistent map, combining different submaps. This is done by keeping a patch based repre-
sentation, of the map. Each patch retains its robot pose estimate, while it is always possible
to obtain an intra-patch pose posterior by propagating the estimates according to the graph
structure. The framework explicitly handles the addition of a new patch, and the loop closing
events through a state machine whose transitions are triggered by a map matching process.
Although this approach does not directly provide a globally consistent map, it retains the
topological consistence during the exploration, and it is suitable for real time operation. The
final map can be obtained by an optimization procedure.

Lisien et al. [Lisien et al., 2003] presents a hierarchical approach to the SLAM problem,
by merging a topological and a metrical representation. A generalized Voronoi graph is used
for partitioning the metric space in regions. Within each region a metric map can be repre-
sented. The choice of the Voronoi graph as a topological skeleton allows to unambiguously
detect the nodes, and can be used for navigating among the different metric maps.

Modayl et al. [Modayil, Beeson, & Kuipers, 2004] propose the use of a mixed topologi-
cal/metrical representation for factoring out the data associations ambiguities, and reasoning
about the possible topologies. Furthermore, they propose an approach for obtaining a global
map from a topological description, and a scan matched map. This is done through an RBPF.
The trajectories are sampled from an informed proposal distribution which considers also the
topological skeleton. The final map is generated through an optimization technique.

Estrada et al. [Estrada, Neira, & Tardos, 2005] present a hierarchical mapping method
that allows to obtain accurate metric maps of large environments in real time. The lower (or
local) map level is composed of a set of local maps that are guaranteed to be statistically
independent. The upper (or global) level is an adjacency graph whose arcs are labelled with
the relative location between local maps. An estimation of these relative locations is main-
tained at this level in a relative stochastic map. The loop closing method, while maintaining
independence at the local level, imposes consistency at the global level at a computational
cost linear with the size of the loop.

Kouzobov and Austin [Kouzoubov & Austin, 2004] present a topological/metric approach
to solving the Simultaneous Localization and Mapping problem. The map is represented
as a graph - nodes are local map frames, and edges are transformations between adjacent
map frames. The underlying local mapping algorithm is FastSLAM. The local maps and
transformations are modelled by sets of particles. There is no global map frame, each map’s
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uncertainties are restricted to its own map frame. The loop dosing is achieved via efficient
map matching. We demonstrate our algorithm running in real-time in an indoor environment
using a laser range sensor.

In the work of Tomatis et al. [Tomatis, Nourbakhsh, & Siegwart, 2001] the metric and
topological paradigms are integrated in a hybrid system. A global topological map connects
local metric maps, allowing a compact environment model, which does not require global
metric consistency and permits both precision and robustness. Furthermore, the approach
handles loops in the environment during automatic mapping by means of the information of
the multimodal topological localization.

Blanco et al. [Blanco, Fernandez-Madrigal, & Gonzalez, 2008] introduces a new ap-
proach to Simultaneous Localization and Mapping (SLAM) which pursues robustness and
accuracy in large-scale environments. Their approach is based on the reconstruction of the
robot path in a hybrid discrete-continuous state space, which naturally combines metric and
topological maps. The novelty of the approach lies in the use of a unified Bayesian inference
approach both for the metrical and the topological parts of the problem and in the analytical
formulation of belief distributions over hybrid maps.

A peculiar work is presented by Newmann et al. [Newman, Cole, & Ho, 2006a] They
describe a 3D SLAM system using information from an actuated laser scanner and camera
installed on a mobile robot.The laser samples the local geometry of the environment and is
used to incrementally build a 3D point-cloud map of the workspace. Sequences of images
from the camera are used to detect loop closure events using a novel appearance based re-
trieval system. The loop closure detection is robust to repetitive visual structure and provides
a probabilistic measure of confidence. The images suggesting loop closure are then further
processed with their corresponding local laser scans to yield putative Euclidean image-image
transformations.

3.4 Discussion
In the previous Section, we presented some of the relevant approaches that have been pro-
posed for SLAM. Although effective solutions for medium scale and static environments have
been proposed, a general algorithm which is able to produce accurate maps of arbitrarily large
environments is still missing.

Usually, in autonomous applications, a localization and mapping engine is used in con-
junction with a path planning algorithm. In order to work in such scenario, a SLAM algorithm
needs to fullfill some properties. It has to provide an up to date map as soon as the new read-
ings are available, without the need of reprocessing the whole sensing history. The map has
to be built incrementally and its estimation should be stable enough so that planning results
on previous maps are still valid. Moreover, the algorithm should be able to correctly handle
loop closing situations, and produce a globally consistent map, useful for navigation.

In the remaining of this Section, we will explain and describe some of the issues that have
to be solved to have a reliable SLAM solution that can be used in real-world scenarios.

3.4.1 Recovery From Failure
Recently, many researchers are studying convergence and consistence conditions for filtering
solutions to SLAM. One property seems to be emerging:
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whichever estimator is used, there is always an environment it is unable to esti-
mate.

Two main reasons justify this statement: density coverage and data association.
Density coverage stems from the fact that the real pose of the robot has to be within the

probability density estimated in the filtering process. If this is not the case, no convergence
criterion is met and every filter tends to diverge. In analyzing this aspect, a fine distinction has
to be done between particle filters and Gaussian-based filters (Kalman and information). As
for particle filters, the coverage problem arises when the number of particles is not “enough”
to represent the probability density over the pose trajectories. In this case, it is possible that
no particle is close to real pose and the convergence conditions on the distribution supports
fail. Up to now, no methods have been proposed to estimate the good number of particles
for a given environment, neither adaptive sampling schemes have been developed. As for
Gaussian-based filters, the main problem consist in the inherent non linearity of the system.
This leads to over confident estimates, resulting in the real pose being outside the 3σ bounds
of the estimated covariance. Some methods have been proposed to “inflate” the estimated
covariance, but this leads to conservative and less accurate estimates. Another possibility is
to use the unscented Kalman filter [Julier, Uhlmann, & Durrant-Whyte, 1995]. However, this
mitigates, but not completely solves the problem [Julier & Uhlmann, 2001]

Data association is another source of algorithm failure. Wrong data association leads not
only to a filter divergence, but it causes all optimization methods to fail. Wrong associations
are usually made when considering only geometric relationships between landmarks. When
only geometric properties are used, an overconfident estimate of the robot pose is not able to
detect the correct association, while a conservative one makes the problem more difficult in
cluttered environments due to the enlarged search space. To the best of our knowledge, only
Hähnel et al. in [Haehnel et al., 2003] explicitly addresses the problem of recovering from
wrong associations. This is done by tracking the possible associations in a tree. A trivial
construction of this tree requires to increase the depth of the tree each time a new observation
is made, by considering all the possible ambiguous matches. However, this approach is
clearly intractable and therefore does not represent a real solution to the problem. The original
framework proposed in [Haehnel et al., 2003] does not specify how to construct such a tree,
while it proposes a theoretical framework. Recently, some works on appearance based data
association have been proposed [Gil et al., 2006; Cummins & Newman, 2007]. Moreover,
a new branch of research is coming out: appearance-based SLAM [Cummins & Newman,
2008].

3.4.2 Dynamic Environments
The static world assumption under which most of the SLAM techniques have been developed
is often not valid. Real world is dynamic: people and other robots are moving; furniture
changes; doors can be open or close. Objects move according to different dynamics, and a
lifelong SLAM algorithm should be able to handle that. The different classes of dynamics
can be classified according to the “speed” of change they present

Static: objects which cannot be moved, like walls or corridors.

Almost Static: objects whose configuration can change over time, but it is in general fixed,
as for example book shelves.
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Fixed Dynamic: objects whose configuration in the environment can change between a lim-
ited set of configurations, like doors or elevators.

Highly Dynamic: objects whose position can change fast during data acquisition, like peo-
ple, cars or other robots.

The first two categories can be merged together if the robot is used for short or medium
time operations. In this conditions, almost static objects are really static. The problem of fixed
dynamic object has been addressed by Stachniss et al. [Stachniss & Burgard, 2005]. They
introduced a Rao-Blackwellized framework which is able to represent multiple configurations
for a single map, and they proposed an approach for localizing in such a map structure. While
this approach is attractive, it is unable to cope with highly dynamic objects, which can be
present in the scene while acquiring the data. To this end Schultz et al. [Schulz et al., 2003]
proposed the use of sample-based joint probabilistic data association filters, for tracking the
dynamic objects and neglecting the corresponding observations. This approach suffers from
the problem that the shape of the dynamic objects should be known in advance, since the
tracking algorithm relies on a feature extractor. Hähnel et al. [Hähnel et al., 2003b] presented
an offline, EM based approach for filtering moving points in range data. The algorithm
maximizes the likelihood of the data using a hidden variable expressing the nature of the
points (static or dynamic). However, this is an offline algorithm which is not suitable for real
time applications.

Wang et al. [Wang et al., 2007] defined an integrated solution for the mapping and track-
ing problem: static points are used for mapping while dynamic ones for tracking. The detec-
tion and segmentation of dynamic points is based on data differencing and consistency-based
motion detection [Wang & Thorpe, 2002]. Points are classified in static and dynamic and
clustered in segments. When a segment contains enough dynamic points is considered dy-
namic. Montesano et al. [Montesano, Minguez, & Montano, 2005] improved the classifica-
tion procedure described in [Wang et al., 2007] by jointly solve it in a Bayesian framework.
Moreover, they integrated the mapping and tracking within a path planner for indoor naviga-
tion.

Although, most of these approaches focuses on how to track the different objects under
different hypothesis,the detection part is mainly based on different heuristics. The main tech-
nique used is based on map differencing, where points are considered dynamic if there is
some inconsistency between two consecutive scans (or a map and a scan). Moreover, the
detection routine is only able to observe the actual position of the object (given a stable ref-
erence point) and the velocities are computed by the tracking algorithm.
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Chapter 4

Rao-Blackwellized Mapping

In this chapter we introduce the general Rao-Blackwellized particle filter framework for the
Simultaneous Localization and Mapping problem. This framework is, however, only partly
specified. The user needs to specify how to draw samples and perform the resampling algo-
rithm. The former option is made by choosing the so called proposal distribution, the latter
is mainly based on some heuristics. Moreover, a map representation needs to be chosen. This
family of filters have been applied to both landmark and grid maps. However, their inner
representation has to be chosen carefully, in order to reduce the memory requirements.

In the following, we first present the general RBPF framework for mapping. Subse-
quently, we discuss the different choices regarding the representation, the proposal and the
resampling strategies. We conclude the chapter highlighting a novel analysis that will be
addressed in the next chapter.

4.1 Rao-Blackwellized Particle Filter for Simultaneous Lo-
calization and Mapping

Classical particle filtering can be very inefficient in this scenario. This is due to the high
dimensional space of the map. The key observation which makes it tractable in this case
is that if the robot trajectory is known, then the posterior over the map can be factored an-
alytically [Murphy, 1999]. This phenomena is known in the statistical literature as Rao-
Blackwellization and the key idea of Rao-Blackwellized particle filters for SLAM is to es-
timate a posterior p(x1:t | z1:t, u0:t) about potential trajectories x1:t of the robot given its
observations z1:t and its odometry measurements u0:t and to use this posterior to compute a
posterior over maps and trajectories:

p(x1:t,m | z1:t, u0:t) = p(m | x1:t, z1:t)p(x1:t | z1:t, u0:t−1). (4.1)

The joint space over robot trajectories 〈x,m〉 and maps can be partitioned according
to Xa × Xb. The posterior over grid maps p(m | x1:t, z1:t) can be computed analyti-
cally [Moravec, 1988], given the knowledge of x1:t and z1:t. To estimate the posterior

45
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Figure 4.1: SLAM Problem seen as a DBN, the map is static. The observed variables are

depicted in gray

p(x1:t | z1:t, u0:t−1) over the potential trajectories, Rao-Blackwellized mapping uses a parti-
cle filter in which an individual map is associated to every sample. Each map is built given
the observations z1:t and the trajectory x1:t represented by the corresponding particle. The
trajectory of the robot evolves according to the robot motion and for this reason the proposal
distribution is often chosen to be equivalent to the odometry motion model.

A Rao-Blackwellized SIR filter for mapping incrementally processes the observations
and the odometry readings as they are available. This is done by updating a set of samples
representing the posterior about the map and the trajectory of the vehicle. The filter performs
the following four steps:

1. Sampling: The next generation of poses {x(i)
t } is obtained from the current generation

{x(i)
t−1}, by sampling from a proposal distribution π(xt | x(i)

1:t−1, z1:t, ut−1).

2. Importance Weighting: An individual importance weight w(i) is assigned to each
particle, according to

w(i) =
p(x(i)

1:t | z1:t, ut−1)

π(x(i)
1:t | z1:t, ut−1)

(4.2)

∝ w
(i)
t−1

p(zt | x(i)
t )p(x(i)

t |x(i)
t−1, ut−1)

π(x(i)
t | x(i)

1:t−1, z1:t, ut−1)
(4.3)

3. Map Estimating: for each pose sample x(i)
t , the corresponding map estimate m(i)

t is
computed. The computation is based on the trajectory of the robot x(i)

0:t and the history
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of observations z1:t according to p(m(i)
t | x(i)

1:t, z1:t).

4. Resampling: Particles with a low importance weight w are replaced by samples with
a high weight.

Note that in Equation 4.2 we assumed the proposal to be suitable for sequential estima-
tion. This enables to incrementally estimate the trajectories and the particle weights.

Moreover, selecting a sequential proposal allows to perform the map estimation in an
incremental way. This is done by storing in each particle a map instance, which depends on
the robot trajectory. When a new trajectory is computed from the old one, the particle map
is updated with the new reading. This consideration allows to focus only on the last pose
x

(i)
t−1 and the last map m(i)

t−1 instead of the sequence of past trajectories and observations
x

(i)
1:t−1, z1:t−1. Representing a map and a pose for each particle, rather than a trajectory, has

the significant advantage that the time required for a filter update does not grow with the
length of the trajectory. On the other hand, this introduces more memory requirements, as the
map dimension can grow over time.

4.2 Specification of Filter Components
Whereas the general framework of RBPF mapping can be summarized by the four steps previ-
ously described, it leaves open the choice of a proposal distribution, an the choice of whether
or not to resample. In this chapter, we discuss how the choice of these two components
can affect the performance of the algorithm. Moreover we discuss some of the approaches
proposed for compactly representing a set of grid maps.

4.2.1 Proposal Distribution
The choice of a correct proposal distribution is a key issue of the RBPF. While the con-
vergence in the theoretical framework is assured only for an infinite number of particles, in
practical situation we see that the filter converges if the particle set is always exploring the
meaningful part of the posterior density. The noise introduced in the sampling step has the
main purpose of exploring the space of the possible robot trajectories generated by a robot
motion/perception. In order to achieve good estimate, a proposal distribution should, on one
side, cover the space of the robot feasible trajectory and, on the other side, be selective enough
so that no computation is wasted on portion of space of low propability.

Moreover, since the maps depend on the robot trajectory, adding an excessive amount of
noise to each time step can decrease the quality of the map estimate. Such a map estimate is
then used in computing the next generation of samples/weights, and its quality loss results in
a worsening of the subsequent filter evolution. This effect becomes evident when the robot
navigates for a long time in a known environment: in the initial stage the robot acquires the
map of the environment, and a correct map/trajectory distribution is assessed. From that point
in time, the subsequent navigation/map-building has the effect of worsening the estimate, due
to the errors introduced in the sample generation stage.

The original proposal distribution introduced by Murphy [Murphy, 1999] consisted by
the raw odometry motion model p(xt|xt−1, ut). While this can be seen as a natural choice,
as it is also the proposal for a localization problem, it also requires a high number of particle,
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Figure 4.2: This picture illustrates two different proposal distributions. The robot moves

along the black line. Left: samples generated according to the odometry motion model.

Right: samples generated according to the scan-matcher error model.

thus limiting the use of the approach to small size environments. This limitation is mainly
due to the memory requirements, as every particle needs to keep a map of the environment.
The approach of Eliazar and Parr [Eliazar & Parr, 2003] alleviates this problem by using a
better map representation (see Subsection 4.2.3 for more details).

In the domain of landmark maps, the memory problem is less evident, thereby in the
approach by Montemerlo et al. [Montemerlo et al., 2002] known as FastSLAM, the same
proposal was used. This approach was then extended by the authors implementing Fast-
SLAM 2.0. The main difference from this approach and the previous one was the choice of
an informed proposal distribution p(xt|x(i)

t−1, ut, zt,m
(i)
t−1). This allows for a great reduction

of the number of required particles, and made it also possible to give a proof of convergence,
under assumptions similar to the ones made about the convergence of KF based approaches.

Within the domain of grid maps Hähnel et al. [Hähnel et al., 2003a] proposed to use
the error model of the scan-matching problem as a proposal distribution. This reduces the
number of particles required of one order of magnitude, with respect to approaches which
are based on the odometry motion model. In Figure 4.2, the two proposal distributions are
shown. However, the main weakness of the approach of Hähnel is that it uses a fixed proposal
distribution. This fixed proposal does not take into account the possible scan matcher failures.
In order to grant an adequate coverage of the feasible robot trajectories, the error model has
been “inflated” by the introduction of artificial noise.

This weakness was then resolved by Grisetti et al. [Grisetti, Stachniss, & Burgard, 2005].
The key idea of their approach is that the informed proposal distribution cannot be fixed as
it strongly depends on the map of the environment (see Figure 4.3). To this end, they devel-
oped an adaptive proposal by approximating the distribution around the maximum likelihood
solution of the scan matcher by a Gaussian

p(xt | m(i)
t−1, x

(i)
t−1, zt, ut−1) ' N (µ(i)

t ,Σ(i)
t ). (4.4)

where, for each particle i, the parameters µ(i)
t and Σ(i)

t can be determined by evaluating the
likelihood function for a set of points {xj} sampled around the corresponding local maxi-
mum.
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a) b) c)

Figure 4.3: Particles distributions typically observed during mapping. In a featureless open

space the proposal distribution is the raw odometry motion model (a). In an open corridor,

the particles distributes along the corridor (b). In a dead end corridor, the uncertainty is small

in all of the directions (c).

In featureless environment, the lack of meaningful structure does not allow a proper par-
ticle sampling and weighting. To overcome this situations, Grzonka et al. [Grzonka et al.,
2007] introduced a look-ahead proposal distribution. The pose prediction is computed, in
each iteration, based on the k next sensory inputs instead of just one. These k measurements
are used to better localize each particle within its own map. Concretely, for each mapping
particle at time t1, they draw l localization particles and localize them k steps ahead within
their map. The resulting pose posterior at time t+k is then used to sample the successor pose
of the mapping particle at time t. A similar idea has also been developed by Beevers and
Huang [Beevers, 2007]. Their approach consists to draw new samples for the last L poses di-
rectly from the joint optimal block proposal distribution: p(xtL+1:t|u1:t,mt−L, ztL+1:t, x

(i)
tL)

The basic idea is to sample from that distribution at each time step, replacing the most recent
L poses of each particle with the newly sampled ones. The result is a particle filter that yields
much better samples since future information is directly exploited by the joint proposal. Thus,
degeneracies in the weights of particles are much less likely to occur.

A bad choice of the proposal affects not only the number of particle, but also the map
quality. The phenomenon is explained in [Grisetti, 2006], performing the following simu-
lated experiment: a mobile robot was moving along a loop in a medium size environment
for a long time. The outcome of grid-based RBPF algorithms is compared by using two dif-
ferent proposal distributions: the uninformed scan-matching error distribution by Hähnel et
al. [Hähnel et al., 2003a], and the informed one proposed by Grisetti et al [Grisetti, Stach-
niss, & Burgard, 2005]. After a while both the approaches generated a correct map. Then the
quality of the estimate started to decrease. While using the proposal in [Hähnel et al., 2003a]
the quality of the estimate decreases after the robot repeats a few loops, in the map generated
using [Grisetti, Stachniss, & Burgard, 2005], this phenomenon is less evident, as can be seen
in Figure 4.4.

4.2.2 Resampling Strategies
An key issue in particle filtering SLAM is the consistency of the SLAM filter. This problem
has been deeply analyzed by Bailey et al. [Bailey, Nieto, & Nebot, 2006] showing experimen-
tally that in general, current particle filtering SLAM algorithms are inconsistent. A filter is
inconsistent when the particle set does not cover the meaningful space of the true distribution,
underestimating its own error.
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# of loops [Hähnel et al., 2003a] [Grisetti, Stachniss, & Burgard, 2005]
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Figure 4.4: The RBPF results of a long navigation, using two different proposal distributions.
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Figure 4.5: The effect of an unneeded resampling step. The left picture depicts the correct

map, and trajectory. The robot moves fromA toB, and it observes the white object at location

l. In the middle picture, a possible 3 particles RBPF behavior is depicted. The red and the

green trajectory are wrong, while the blue one is correct. In the right picture, a resampling

occurs, and only the wrong red trajectory survives. The real trajectory and landmark are

represented by the dotted lines. All the robot trajectories descending from the red one share

the same wrong map. Notice that even if the final robot location of the green trajectory is

correct, the error inherited by the red path persists.

This phenomenon is in large part due to degeneracies caused by frequent resampling,
a problem known in literature with the name of particle depletion [van der Merwe et al.,
2000]. While degeneracy affects all particle filter, it is more severe and evident in the case
of SLAM. Consider a resampling step in a typical particle filter, let say for a localization
problem. Suppose we have a highly skewed weight distribution. After the resampling, only
few particles survive highly underestimating the error. However, if the particles are close
enough to the correct solution we can still recover from this situation thanks to the spreading
due to the proposal distribution. Consider now the same situation, but in a SLAM context.
The same resampling step at time t which replicates n times a particle causes the trajectory
of that particle to be represented n times in the sample set. Since the map is constructed
according to the trajectory, the maps of the n particles can differ only after time t, before
they are the same. Here there is no possibility to recover from this bad situation, because of
the incrementality of the proposal distribution. This fact is alleviated with the uses of future
information in the proposal (see the previous Section), but still not solved. The phenomenon
is illustrated in Figure 4.5.

To this end, some approaches have been explored to reduce this effect. The first attempt
to solve the particle depletion problem is to improve the proposal distribution, such that the
weight variance is minimized. This is obtained through the use of the so-called optimal
proposal [Doucet, 1998].

Another possibility is to reduce the frequency of the resampling. In the basic particle
filter, the resampling is performed at ever time step. However, Liu [Liu, 1996] showed that
if all particle are approximately equally weighted, the efficiency of sample representation is
decreased by a resampling. This idea has been introduced in the RBPF for SLAM by Grisetti
et al. [Grisetti, Stachniss, & Burgard, 2005]. In their work, the authors used the effective
number of particles Neff as a measure of the quality of the particle estimate

Neff =
1∑N

i=1

(
w(i)

)2 .
In order to determine whether or not a resampling should be carried out they follow the
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approach proposed by Doucet [Doucet, 1998]. Each time Neff drops below the threshold of
N/2 where N is the number of particles, a resampling is performed.

The approach of Stachniss et al. goes in another direction. While improving the resam-
pling strategy prevent the loss of particle diversity, their approach try to recover it after a
loss. To do so, the authors store the “state” of the particle filter when the robot enters into a
loop. After repeatedly traversing the loop to improve the map (a process normally resulting
in loss of diversity), the filter state is restored by splicing the loop trajectory estimate onto
each saved particle, effectively restoring the diversity of the filter prior to loop closing.

Similarly, Beevers and Huang [Beevers, 2007] propose an MCMC strategy to restore
particle diversity after a resampling. Their approach lies in the resample-move framework,
typical of target-tracking literature [Gilks & Berzuini, 2001]. The basic idea is to incorporate
an MCMC step to “move” the trajectory of each particle over a fixed-lag time, by means of
a Gibbs sampler. After the move, the particles are still distributed according to the desired
posterior but degeneracies over the lag time have been averted. The samples are already
approximately distributed according to the desired posterior before the move, so the usual
burn-in time of MCMC samplers can be avoided.

4.2.3 Representation

A final problem affecting the grid based RBPF approaches is represented by the amount of
memory required for storing a grid map for each sample. In the open source implementation
of Hähnel et al. [Hähnel et al., 2003a], the problem is solved by representing only the robot
trajectories. Each time the particle map was needed (and this happens each time the likeli-
hood has to be evaluated) it was constructed from scratch using the scans and the trajectory.
Although this approach effectively reduces the memory requirements, it presents a serious
computational problem: the time required for constructing the maps grows with the length of
the trajectory.

Parr et al [Eliazar & Parr, 2003] proposed a different schema, called distributed particle
SLAM (DP-SLAM). The work is based on the consideration that the trajectories generated
by a particle filter can be represented as a tree. The number of leaves of such a tree is the
number of particles. Considering a path from a leaf to the root of such a tree, it is possible
to detect a set of nodes in which a branch occurs. The authors propose to pack the map
updates occurring among consecutive branches, and to prune the nodes unreachable from the
leaves. In this way, the number of leaves of the “compressed” tree as well as its depth is
bounded by the number of particles. The memory complexity is minimized, since shared
portions of trajectories shares the same map updates. However, if all the trajectories differ
from the beginning, it is still needed to store a grid map for each particle. Figure 4.6 depicts
the trajectory tree and the compressed tree built from it.

4.3 Discussion

Rao-Blackwellized particle filters are indeed an effective tool for solving the Simultaneous
Localization and Mapping problem. Since their introduction in the work of Murphy [Murphy,
1999] several improvements have been made, making the approach very competitive, also
compared to other filtering techniques like the Kalman filter.
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Figure 4.6: This figure depicts the trajectory tree, and the compressed DP-SLAM tree. On the

right the original trajectory evolution is depicted, on the right the compressed tree obtained

by i) deleting the nodes which are not reachable from the last level nodes, and ii) collapsing

the paths among consecutive branches. The tree is bounded both in depth and in width by the

number of particles.

First of all, their intrinsic capability of factoring the target distribution into a robot tra-
jectory and map makes the approach very competitive for estimating grid maps. In Kalman
filtering, for example, the estimation of grid maps is only possible through a delayed-state for-
mulation [Eustice, Singh, & Leonard, 2005], where the map is represented through a set of
points, or by explicitly represent every point as a landmark, making the inference intractable.

If a sequential proposal distribution is chosen, RBPFs allows to incrementally estimate
the distribution over the robot trajectories. The t step generation of samples can be obtained
from the previous step generation, by augmenting the each sample trajectory with the actual
robot movement.

Since particle filters represent the probability distribution through a set of samples, their
use is not restricted to applications in which the estimated distribution is Gaussian. This al-
lows to estimate multimodal distributions, making them a useful tool for dealing with multiple
hypotheses.

Using an RBPF does not require to linearize the observation or the motion model of the
system, in fact relaxing most of the assumptions which are required to hold when using other
approaches.

However, there are still some drawbacks in using RBPF for SLAM. In order to be con-
sistent, the filter needs to cover the meaningful part of target distribution. As this distribution
is approximate with a finite number of samples, the higher is the uncertainty in the distri-
bution, the higher is the number of samples needed to approximate it. The particle filters
have a theoretical justification as the number of particles goes to infinity. In practice such
a number usually grow exponentially with the size of the biggest loop in the environment.
However, observe that the SLAM problem in its general form is intrinsically exponential, be-
cause of the data association. In principle one wants to track all of the possible associations,
whose number grows exponentially with the made observations. Despite these theoretical
considerations the bounds in the uncertainty affecting both robot trajectory and observations
allow to restrict the search space, thus enabling the development of algorithms which works
in practical situations.
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Since each particle represents its own map, a straightforward RBPF using a grid rep-
resentation independently stores those maps, resulting in significant memory requirements.
While effective solutions for representing a minimum number of maps have been proposed,
the worst case still requires to independently represent a complete map for each particle.

The improvements made in the literature lessen the particle depletion and some memory
issue, making the filter applyable in typical scenarios. However, those techniques only focus
on one of the problem at time, trying to solve it. The analysis is made on the symptom of the
problem (i.e. memory requirement, time complexity) and ad-hoc technique for solving it are
adopted.

In Chapter 5, we take the opposite way. We first make a deep analysis about how the
process itself evolve and its structural properties. The exploitation of the process inner struc-
ture allows us to derive a fast approximated approach to Rao-Blackwellized mapping, which
also uses a hierarchical patch based representation for compactly storing a distribution over
maps and trajectories. We discuss how to effectively update such a structure performing ap-
proximated inference. The advantages introduced by the new trajectory/pose representation
leads to a reduction of the memory requirements of several orders of magnitude with respect
to approaches which individually stores the different grid maps. The approximated infer-
ence allows to update the structure one order of magnitude faster than previous approaches,
making it possible to build real time maps of large environments.



Chapter 5

Introspective Filter

5.1 Introduction
In Chapter 4, we introduced the Rao-Blackwellized particle filter for the Simultaneous Lo-
calization and Mapping problem. We described several state-of-the-art solutions to reduce
the time and memory complexity of the classical filter.

In [Grisetti, Stachniss, & Burgard, 2005], they proposed an approach for computing an
improved proposal based on both the current motion and the current observation. Each parti-
cle has its own grid map, and the proposal is computed for each particle. Such a computation
requires to perform scan matching for each particle with respect to its own map, and to sam-
ple around the maximum provided by the scan matcher. Subsequently the likelihoods of this
set of points are used for computing a Gaussian approximation of the proposal from which
to draw the next robot pose hypothesis. Although using the above discussed improvements
leads to a great reduction of the number of particles required for achieving a correct map,
as the environment size grows, this number increases. Accordingly, the computational effort
required by this approach can prevent its real time use, while the memory complexity can
prohibit its use on actual computers.

In [Eliazar & Parr, 2003], an improved map representation is used to reduce the mem-
ory requirements of the filter. The work is based on the consideration that the trajectories
generated by a particle filter can be represented as a tree. The number of leaves of such a
tree is the number of particles. Considering a path from a leaf to the root of such a tree, it
is possible to detect a set of nodes in which a branch occurs. The authors propose to pack
the map updates occurring among consecutive branches, and to prune the nodes unreachable
from the leaves. In this way, the number of leaves of the compressed tree as well as its depth
is bounded by the number of particles. The memory complexity is minimized, since shared
portions of trajectories shares the same map updates.

However, those approaches only analyze a small portions of the problem (the map in [Eli-
azar & Parr, 2003] and the particle number in [Grisetti, Stachniss, & Burgard, 2005]). In this
Chapter, we perform a deeper introspective analysis of the whole problem, obtaining an ap-
proximate RBPF with

• a memory efficient way for representing a distribution over maps,

55
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• a computationally efficient approach for updating the trajectory samples.

Experiments have shown that this approach is one order of magnitude faster than the approach
discussed in Chapter 4, and it requires several orders of magnitude less memory, making it
possible to compute in real time even larger maps.

The filter improvement is done by first performing an analysis of the its evolution dur-
ing several runs in Section 5.2. The goal of this analysis is to understand the relationships
among the different situations of the mapping process, and the different filter behaviors. The
data structures which allow to compactly represent trajectories and maps are presented in
Section 5.3, and in. Section 5.5 the heuristics for determining the mapping system situation
are discussed. Subsequently, we devise an approach that allows to draw trajectory samples
in an efficient way (Section 5.4). Finally, we discuss the details on how to update the above
structures, by specifying how the basic operations of the algorithm are performed (Subsec-
tion 5.3.1) Experiments and results are discussed at the end of the chapter.

5.2 Introspective Analysis of Rao-Blackwellized Mapping

Figure 5.1: The mapping process automaton.

In this section we analyze the evolution of the filter. While the analysis is performed
with a particular focus to a Rao-Blackwellized particle filter solution, its result is valid for
any filtering approach to the problem. Let consider the examples depicted in Figure 5.2 and
Figure 5.3. On the left part of the image, we can see that the robot is exploring previously
unseen terrain and collecting new data. After a while, it reenters in a known terrain after a
run in an unknown region. This situation, called loop closing, is shown in the center of the
figure. Finally, on the right side of the image, we can see that the robot is navigating within a
part of the environment already visited, thus it is in a localization stage.

In Figure 5.1 the mapping process is depicted as a finite state automaton having three
states. The filter updates have a different effect depending on the current state and the transi-
tion.

In each of these states the filter behaves in a different manner. In the following, we will
describe the different situations and the behavior of both the RBPF and the KF. The results
are then summarized in Table 5.1 for the RBPF and in Table 5.2 for the KF.

Exploration When the robot moves in unknown terrain, the overall uncertainty grows,
since the spreading introduced by the motion model can only be bounded by the observa-
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Figure 5.2: Introspective analysis of RBPF: exploration (left), loop closing (center) and local-

ization (right). The triangles represents the different robot poses. The best particle is shown

in black, while the others in dark yellow. The brown rectangle depict the bounding box of the

current reading

Figure 5.3: Introspective analysis of KF: exploration (left), loop closing (center) and local-

ization (right). The black triangle represent the robot pose with its covariance ellipse. The

map landmarks with their respective covariance ellipses are depicted in dark yellow. The red

stars represent the current observation.

tions. Such observations are related to a partially known region. The uncertainty increase is
due to the errors accumulated along the trajectory. In the RBPF, this results in growing differ-
ences among the sample weights, which leads to a slow decrease of Neff . The slow decrease
is due to the fact that the current observation is explained by part of the map that is similar
among the different particles. In the KF, we see an increase of the covariance matrix of the
robot pose, Σ. The newly created landmarks are correlated to the current pose, resulting in
high correlation links with nearby landmarks. However, this correlation decays exponentially
with landmarks far away in time and the covariance update can be approximated by modify-
ing only portion of its matrix. This last observation is also at the core of some results about
the sparsity of the information matrix in SLAM.

Localization Conversely, when the robot is moving in known terrain, it keeps localized in
the map. Its uncertainty is bounded by the accuracy of the sensor and the map estimate by
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Particles Behavior Neff

Exploration The particle cloud spreads according to the opti-

mal proposal

slow decrease

Localization Each robot pose hypothesis keeps localized in its

own map.

mainly constant

Loop Closing The particles are replicated according to their

weight. The ones which correctly close a loop are

retained, the others are suppressed.

fast drop

Table 5.1: The behavior of the RBPF during mapping

Data Association Σ

Exploration One part of the observations is associated to

highly correlated landmarks, the other one is used

to create new landmarks.

slow increase

Localization Observations are associated to highly correlated

landmarks.

mainly constant

Loop Closing Observations are associated to loosely correlated

landmarks.

fast drop

Table 5.2: The behavior of the KF during mapping

the Cramer-Rao bound [Censi, 2007b]. When the sensor is accurate, the uncertainty of the
map conditioned to the robot position is very small, thus this situation can be casted as a
localization problem, which is simpler to deal. In the RBPF, this means that it is possible
to compute the distribution of the robot poses only for one particle and then translate that
distribution to the other particles. Since in this stage the different maps are locally similar,
the contribution of the updates to the particle weight is more or less constant for the different
samples. This strongly limits theNeff decrease, resulting in an observed constant behavior. In
the KF, we have that the landmarks estimate shows only minor update and is mainly constant,
so that is possible to approximate the measurement update phase and only update the robot
pose part. In this case, the robot uncertainty is mainly costant and bounded by the Cramer-
Rao.

Loop Closing A loop closure results in a decrease of the uncertainty of the robot pose in
particular and of the whole system in general, constraining the uncertainty at the loop clo-
sure to be smaller than the uncertainty at the loop entrance. In the RBPF, the likelihood of
each particle is evaluated according to its own map. In this situation only a fraction of the
robot pose hypotheses are in the right position. These hypotheses will be rewarded by a high
weight, while the others are likely to be suppressed by a subsequent resampling stage. This
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results in an entropy decrease, since the weights distribution becomes more peaked. After
a loop has been detected only a few particles have a high weight and a fast drop of Neff is
observed. If using an adaptive resampling schema the low Neff value triggers a resampling
action. In the KF, we have that the current observation is associated with two main landmarks
cliques (see Figure 5.3 center). These two cliques are composed by highly correlated land-
marks, but they are almost uncorrelated between each other. This has two main effect in the
filter behavior. The first is that data association became more difficult as each clique can push
the system towards different part of the solution space, making also robust data association
algorithm like the joint compatibility test harder. The second is that, after the loop is closed,
these two groups of landmarks became correlated, resulting in a forced full update of the
covariance matrix.

5.3 Map Representation
In order to exploit the different situations devised in the previous section, the map represen-
tation has to be carefully planned. Firstly, we need an accurate description, so that a pose
tracker algorithm can provide precise results. This is particularly relevant when the mapper
is in the localization situation. Secondly, we want to detect in which situation the mapper is,
thus obtaining a form of situation assessment. Lastly, we need a representation when sub-part
of the map can be easily accessed and composed together.

In order to achieve all of this requisites, we decide to represent the environment in a hybrid
topological-metrical map. Our choice is to represent a map as a set of local maps (patches)
embedded into a global network (graph). The nodes of the graph are the patch references,
while the edges are the connections among patches. Given that the patches can be assumed
locally consistent, it is possible to represent a global map by specifying the location of the
patches in a global reference frame. We can therefore represent a sampled distribution over
maps, by storing:

• all the patches P1, . . . ,PN .

• for each trajectory sample x(i)
0:t, the locations of the patches l(i)1 , . . . , l

(i)
N according to

that trajectory.

We can generate a standard grid representation for each particle by combining all the
relevant patches. This representation is much more compact than storing individual grid
maps. Let φi be a list of references to the patches. The corresponding map can be computed
by

m(i) =
⋃
n

l(i)n ⊕ Pφi(n). (5.1)

In general, there exists more than one possible topological structure. The environmental
ambiguities in the loop closure map can result in a multi-modal particle distribution. This
can be modelled by defining the concept of “particle cluster”. A particle cluster is a set of
trajectory samples which can be obtained by grouping them in small regions so that the maps
within one cluster share the same topology. The reader can think of a cluster as the set of
trajectory samples that belong to a single mode in the distribution.

In other words a cluster is a subset of particles whose maps share the same topological
graph. Of course, each particle belongs to a single cluster. After it is created, a cluster
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Figure 5.4: Particle cluster example: (left) The posterior about the robot poses. (right) The

corresponding topologies and posterior after clustering.

is evolved independently from the others. The only interaction is in the resampling steps,
that are simultaneously performed on all the particles in the system. Due to the fact that
the clusters are evolved independently, within each cluster we can have different patches.
Moreover, since the particles in a cluster share the same topology we don’t need to store the
topological structure in each particle, but only once, in the particle’s cluster.

In Figure 5.4 the idea of how to compute a map cluster from a set of particles is depicted.

A generic trajectory PDF can be factorized in a set of clusters, each of them having its
own map patches. The concept of cluster does not explicitly appear in the mathematical for-
mulation of the algorithm, but it is a support feature used for enforcing the local consistency
of the maps by tracking different hypotheses.

Within a particle cluster, the local maps of each particle are locally similarity. Therefore,
they can share their patches. This results in a much more compact representation compared
to storing individual grid maps. In our current implementation, we used a graph structure and
each node is a reference to the corresponding patch. To implement our representation, we
store for each particle the state vector s(i)

t

s
(i)
t =

〈
x

(i)
t︸︷︷︸

robot pose

, k︸︷︷︸
cluster ID

, l
(i)
1 , . . . , l

(i)
Nk︸ ︷︷ ︸

patch locations

〉
, (5.2)

whereas each cluster Ck is represented by

Ck =

〈
P1, . . . ,PNk︸ ︷︷ ︸

pointer to patches

, {el,m}︸ ︷︷ ︸
graph edges

〉
. (5.3)

Note that NK does not grow with the length of trajectory traveled by the robot. It grows with
the number of relevant patches which is related to the size of the environment.
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Patch Location
Layer

possible
patch locations

patch
references

Grid Map Layer

Cluster Layer

Cluster 1 Cluster 2 Cluster 3

Figure 5.5: The map representation used in our approach.

In practice we extend the notion of a hierarchical representation made of two layers, to
a three layered representation, shown in Figure 5.5. The top layer (cluster layer), takes into
account the topologies resulting by enforcing the local map similarity within a cluster. The
middle layer represents the distribution of the centers of the patches, within one cluster. The
final layer holds the grid patch representation. The compactness is achieved by the fact that
the patches are shared among clusters and particles.

5.3.1 Basic Operations
In this section we describe some details about the basic operations performed in updating the
previously described map representation. For each cluster Ck, we need to store in which node
vk the robot actually is. We call this variable the active vertex, and it represents the vertex
around which the local map is constructed. Before describing the algorithm we need to give
some insight about the basic operations. These operations include: selecting the active vertex
in the map, constructing a new patch and constructing a local grid map.

Changing the Active Vertex

When the robot moves, its location in the map changes, and the active vertex should change
accordingly. When the robot is in vertex vk, a local graph of the patch locations around vk is
constructed by selecting the neighborhood visit of the cluster’s graph. This visit returns a set
of vertexes Vt = {v1, . . . , vn}. Each of these vertexes is associated to a map patch. Let i be
a generic particle in the cluster, and consider a vertex vq ∈ Vt. Given the pair < i, vq > it is
possible to instantiate the location l(i)q of the map patch corresponding to vq . Generalizing,
given a particle index i and a set of vertexes Vt we can consider the corresponding set of
patches locations Lt = {l(i)1 , . . . , l

(i)
n }. A straightforward approach for choosing the active

vertex is to randomly select a particle i in the cluster, and choose as a new active vertex the
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one which minimizes the distance among the particle’s robot pose x(i)
t and l(i)q ∈ Lt. If the

minimum distance is above a given threshold a new patch and a new vertex are added to the
map of each particle in the cluster, and the newly created vertex becomes the active one.

Creating a New Patch

Each time the active vertex changes, a local empty map is created. Such a map is updated
according to the scan-matcher corrected robot poses, and the center of mass of the occupied
cells is selected as the patch reference frame. All of the patch points are expressed in the
reference frame of the patch center of mass. In this case the active vertex is moved to the
newly created patch, and the new patch is added to the cluster. The newly created vertex is
subsequently connected with the previous active vertex by adding an edge.

Constructing a Local Map

There exists a local grid map for each cluster. It is rebuilt each time the active vertex changes.
The construction of the local map works as follows: a random particle i within the cluster is
selected. The graph around the active vertex is visited up to a given depth. This results in the
selection of a set of vertexes. The location of the corresponding patches within the particle
i, l(i)r1 , . . . , l

(i)
rN becomes the new patches locations. The patches are painted in an empty grid

map one over the other, according to their locations.

Patch Directory

As an additional optimization we notice that although the criterion for detecting possible loop
closures discussed in Section 5.5 is effective, it can be time consuming, because of the ray
tracing operation on grid maps, which has to be performed for each particle. In order to limit
the number of loop closure checks, the analysis is performed depending on the outcome of a
heuristic. This heuristic relies on a low resolution grid map: the patch directory. Each cell of
the patch directory contains a set of pairs of indices: a particle index, and a patch index. The
pair < i, k > is contained in the cell (x, y) if the patch k translated according to its location
l
(i)
k relative to the particle i, covers the map cell (x, y). At each time we can check whether a

loop closure can occur, by computing a bounding box Bt, which is the union of the bounding
boxes b(i)t of the reading zt, translated according to the particles. Subsequently, we consider
all of the patch indices which fall within this bounding box k1, . . . , kM . By computing the
set difference among this set and the patch indices in the local map, we have the indices
of the map patches which are not in the local map, but are covered by a sensor reading for
some particle. If this set is not empty, then the deep loop check described in Section 5.5
is performed. In order to capture a locally consistent cluster we keep an independent patch
directory for each cluster.

5.4 Situation Based Rao-Blackwellized Particle Filters
A key problem of RBPF is the computational complexity of the informed proposal distribu-
tion. The computations need to be carried out for each sample individually. Moreover, each
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particle maintains a full grid map of the environment which requires to store large structures
into memory. As a result, such a mapping system is able to run online only for small particle
set, preventing its use in large environments.

In general the resulting maps around the robot pose are locally similar, since the samples
are drawn from a peaked proposal. This means that, considering the same region of the
environment, and two different particles at the same time instant, it is possible to find a
translation which makes the maps of the two particles overlap.

It can be observed that, during the majority of the time, the mapping system is either in a
localization situation, or in a exploration one. The loop closing situations occur not so often.
When not closing a loop the shape of the proposal distribution depends only on:

• the robot pose within the local map;

• the local map around the robot;

• the current observation.

Therefore, we can compute the proposal distribution for a particle starting from the proposal
computed for another particle, by simply translating the first proposal according to the posi-
tion of the two particles local maps.

In the following we discuss how to efficiently update the distribution over robot trajec-

tory. This can be done by exploiting the a priori knowledge about the mapping system. For

efficiently estimating such a proposal the following assumptions have to hold:

Assumption 5.1 The current situation is known, which means that the robot is able to deter-

mine if its exploring new terrain, localizing in a known area or closing a loop.

Assumption 5.2 The corresponding local maps of two samples are similar if considered

in a particle-centered reference frame. In the following, we refer to this property as local

similarity of the maps.

Assumption 5.3 An accurate algorithm for pose tracking is used and the observations are

affected by a limited sensor noise.

A heuristic that enforces Assumption 5.1 is presented in Section 5.5. Assumption 5.3 is
normally satisfied if using a laser range finder together with a scan matching procedure. For
Assumption 5.2 to hold the different modes of the robot trajectory distribution have to be
independently updated, as explained in Section 5.3. Under the above assumptions we derive
the equations for drawing the particles according to the goal distribution, and for updating
the weights in the three situations of Table 5.1.

5.4.1 Exploration
For proximity sensors like laser range finders, the observations of the robot cover only a local
area around the robot. As a result, we only need to consider the surroundings of the robot
when computing the proposal distribution and the importance weight of the RBPF. Let m̃(i)

t−1
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be the local map of particle i around its previous pose x(i)
t−1. In the surroundings of the robot,

we have

p(xt | m(i)
t−1, x

(i)
t−1, zt, ut−1) = p(xt | m̃(i)

t−1, x
(i)
t−1, zt, ut−1) (5.4)

Let ⊕ and 	 be the standard pose compounding operators (see [Lu & Milios, 1997b]):
a 	 b is an operator that translates all the points in the domain of the function a so that the
new origin of the domain of a is b1. The local similarity between maps (Assumption 5.2 )
allows us to write

m̃
(i)
t−1 	 x(i)

t−1 ' m̃
(j)
t−1 	 x(j)

t−1. (5.5)

Proposal Distribution

Considering the insight obtained from Assumption 5.2, we obtain that the proposal distribu-
tions of different particles are similar if transformed to an egocentric reference frame

p(xt 	 x(j)
t−1 | m̃(j)

t−1, x
(j)
t−1, zt, ut−1) ' p(xt 	 x(i)

t−1 | m̃(i)
t−1, x

(i)
t−1, zt, ut−1)

(5.6)

Therefore, we can compute the proposal distribution of particle j by computing the proposal
distribution in the reference frame of another particle, say i, and then translating it to the
reference frame of particle j

p(xt | m̃(j)
t−1, x

(j)
t−1, zt, ut−1) ' p(x(j)

t−1 ⊕ (xt 	 x(i)
t−1) | m̃(i)

t−1, x
(i)
t−1, zt, ut−1)

(5.7)

This computation is illustrated in Figure 5.6. It shows how to transform a proposal distribu-
tion among particles. In this way, the complex proposal computation needs to be performed
only once and its result is shared among all the particles.

Importance Weighting

It can be observed that the two proposals are close to each other. Equation 5.7 tells us that,
when exploring unknown environments, we can compute the informed proposal for only one
particle. The proposal for other particles can be subsequently obtained by simple coordinate
transformations. There exists empirical evidence that the difference in the particles weights
slowly increases, resulting in a slow Neff decay. This decrease strongly depends on the
amount of overlapping among the current observation and the known part of the map. This
overlap is particle dependent.

Evaluating the weights of a particle in this case requires to evaluate the weights according
to

w
(i)
t = w

(i)
t−1p(zt | m(i)

t−1, x
(i)
t−1, ut−1)

1 In the following of this document we make an extensive use of the motion composition operators ⊕ and 	. If

a and b are robot poses c = a	 b is the relative movement which translates the robot from b to a. Accordingly the

⊕ operator applies a relative movement to a robot pose, so that the following holds b⊕ c = a.
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Figure 5.6: Proposal distribution in the exploration situation: Image (a) depicts the pose

of the robot and its local map for one particle. The proposal computed is represented by

the green/gray ellipse. Image (b) depicts the local map for another particle. The proposal

computed in the robot reference frame is shown in (c), and (d) illustrates the proposal of the

i-th particle translated into the refercence frame of the j-th.

Performing the weights updates according to the above equation requires to sample the like-
lihood around each robot pose. Furthermore, we notice that if we drop the normalization
step, unless a resampling is made, the weight of one particle does not depend from the oth-
ers, therefore the decrease of the absolute value of Neff does not depend on the number of
samples. By raising the number of samples we can avoid the Neff value to trigger a resam-
pling. In other words we can choose a number of particles high enough so that the decrease of
Neff that occurs when navigating in an unknown region never triggers the resampling. This
consideration lead us to compute the weight once for the reference particle, and then propa-
gating it to all of the particles which are drawn according to the proposal computed for such
a reference particle.

Approximation Details

The level of approximation introduced by the above technique is strictly related to the size of

the local maps, m̃(i). In the following we will show that if the local map consists only of the

previous reading, the method is exact.

Theorem 5.1 (Approximation Theorem) Let the local map consist only of the previous

reading and Assumption 5.3 hold. The similarity becomes equality and Equation 5.6 becomes

p(xt 	 x(j)
t−1 | m̃(j)

t−1, x
(j)
t−1, zt, ut−1) = p(xt 	 x(i)

t−1 | m̃(i)
t−1, x

(i)
t−1, zt, ut−1)

(5.8)

Proof of the Approximation Theorem Let rewrite Equation 5.8 into

p(xt 	 x(j)
t−1 | zt−1, x

(j)
t−1, zt, ut−1) = p(xt 	 x(i)

t−1 | zt−1, x
(i)
t−1, zt, ut−1)

(5.9)
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where the only particle dependent part is represented by x(j)
t−1. Let now consider how the

distribution is computed. The typical solution, and the one adopted in this work, is to perform
a Gaussian approximation centered in the maximum reported by a scan matcher algorithm.
In such a setting, the variable x(j)

t−1 only influences the mean of the resulting distribution. The
scan matcher distribution is the same in both cases, allowing us to write

p(st | zt−1, x
(i)
t−1, zt, ut−1) = p(st | zt−1, x

(j)
t−1, zt, ut−1) (5.10)

where s(i)
t = xt 	 xt−1 is the displacement computed by the scan matcher.

Corollary 5.1 Let the local map consist only of the previous reading and Assumption 5.3

hold. The proposal distribution of a particle can be exactly obtained by computing it in the

reference frame of another particle and then translating it to the reference frame of the first

one.

p(xt | m̃(j)
t−1, x

(j)
t−1, zt, ut−1) = p(x(j)

t−1 ⊕ (xt 	 x(i)
t−1) | m̃(i)

t−1, x
(i)
t−1, zt, ut−1)

(5.11)

Proof The fact comes directly from Theorem 5.1 and the fact that s(i)
t = xt 	 x(i)

t−1.

In general, the smaller is the local map, the better is the approximation of this approach.
However, for smaller local maps, the uncertainty of the distribution is slightly bigger, thus
more particles are needed. In practice, the size of the maps is chosen according to the preci-
sion requested from the application and the available computational power.

5.4.2 Localization

Whenever the robot moves through known areas, each particle stays localized in its own map
according to Assumption 5.3. In such a situation, the pose distribution is very peaked and
can be approximated with a Dirac distribution. To update the pose of each particle while the
robot moves, we choose the pose xt that maximizes the likelihood of the observation around
the pose predicted by the odometry reading.

x
(i)
t = argmax

xt

p(xt | m̃(i)
t−1, x

(i)
t−1, zt, ut−1) (5.12)

Suppose that we know a pair of corresponding points in the two local maps l(i) and l(j).
Since we assume that the robot moves through known terrain, these reference frames have
been established when the robot has visited the corresponding area for the first time. By
exploiting Assumption 5.2 and Equation 5.5, we can rewrite the similarity among local maps
as follows:

m̃
(i)
t−1 	 l(i) ' m̃

(j)
t−1 	 l(j). (5.13)
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Figure 5.7: Proposal distribution in the localization situation. Left: The robot moves accord-

ing to the dashed arrow. The maximum likelihood pose computed for a robot pose. In red are

the observations. Right: We can obtain the maximum likelihood pose for other particles by

applying the robot translation vector to a local map relative reference frame.

Proposal Distribution

The above relationship allows to rewrite the right term of Equation 5.12, for the two particles
as

p(xt 	 l(j) | m̃(j)
t−1, x

(j)
t−1, zt, ut−1) ' p(xt 	 l(i) | m̃(i)

t−1, x
(i)
t−1, zt, ut−1). (5.14)

By manipulating Equation 5.6 we can express the prior of a robot pose hypothesis with respect
to the current observation and its own map, as a function of the proposal computed for another
particle:

p(xt|m̃(j)
t−1, x

(j)
t−1, zt, ut−1) ' p(l(j) ⊕ (xt 	 l(i))|m̃(i)

t−1, x
(i)
t−1, zt, ut−1)) (5.15)

By combining Equation 5.14 and Equation 5.15 we have

x
(j)
t = argmax

xt

p(xt|m̃(j)
t−1, x

(j)
t−1, zt, ut−1)

' argmax
xt

(l(j) ⊕ (p(xt 	 l(i)), m̃(i)
t−1, x

(i)
t−1, zt, ut−1))

= l(j) ⊕ (x(i)
t 	 l(i)) (5.16)

The previous equation tells us that, if the maps are locally similar and we know two corre-
sponding points in the local maps of different samples we can estimate Equation 5.12 for a
generic sample. This can be done for one sample by evaluating Equation 5.12 for a parti-
cle i. Once a value x(i)

t is obtained for the ith sample, it is possible to compute the result
of the evaluation of Equation 5.12 for another sample j by a simple combination of relative
movements expressed by Equation 5.16.

In Figure 5.7 the above procedure is sketched.
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Figure 5.8: Local vs. loop map. The local map is used for the proposal distribution. The loop

map for the weight computation.

Importance Weighting

The weight update in this stage is done as in the exploration situation: the weight variation
of the reference particle is propagated to all of the particles drawn from the reference particle
proposal.

5.4.3 Loop Closing

In contrast to the two situations described before, the computation of the proposal is more
complex in case of a loop-closure. This is due to the fact that Assumption 5.2 (local similar-
ity) is typically violated even for subsets of particles. Let us assume that the particle cloud
is widely spread when the loop is closed. Typically, the individual samples reenter the pre-
viously mapped terrain at different locations. This results in different hypotheses about the
topology of the environment and definitively violates Assumption 5.2. Dealing with such a
situation, requires additional effort in the estimation process.

Proposal Distribution

Whenever a particle i closes a loop, we consider that the map m̃(i)
t1 of its surroundings consists

of two components: m(i)
loop referring to the map of the area the robot seeks to reenter; m(i)

local

referring to the map constructed from the most recent measurements, without the part of the
map that overlaps with m(i)

loop. In Figure 5.8 is sketched the difference between the two maps.

p(zt | xt,m(i)
t−1) = p(zt | xt,m(i)

local,m
(i)
loop) (5.17)
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Since those two maps are disjoint and under the assumption that the individual grid cells are
independent, we can use a factorized form for our likelihood function

p(zt | xt,m(i)
local,m

(i)
loop) ∝ p(zt | xt,m(i)

local)p(zt | xt,m(i)
loop) (5.18)

Given such decomposition, the samples are drawn by only considering the local part of
the map, thus using the following proposal distribution

p(xt | zt, x(i)
t−1,m

(i)
local, ut−1) (5.19)

Given that Assumption 5.2 still holds when restricted to the local mapm(i)
local, the particles are

drawn in the same way as they are in the exploration situation described in Subsection 5.4.1

Importance Weighting

According to the Importance Sampling Principle, the choice of p(xt | zt, x(i)
t−1,m

(i)
local, ut−1)

as a proposal distribution leads to the following weight computation

w
(i)
t = w

(i)
t−1

p(x(i)
t | zt, x(i)

t−1,m
(i)
local,m

(i)
loop, ut−1)

p(x(i)
t | zt, x(i)

t−1,m
(i)
local, ut−1)

= w
(i)
t−1

η
(i)
1 p(zt | x(i)

t ,m
(i)
local)p(zt | x(i)

t ,m
(i)
loop)p(x(i)

t |x(i)
t−1, ut−1)

η
(i)
2 p(zt | x(i)

t ,m
(i)
local)p(x

(i)
t |x(i)

t−1, ut−1)

= w
(i)
t−1p(zt | x(i)

t ,m
(i)
loop)

η
(i)
1

η
(i)
2

(5.20)

The sample weights can be evaluated by computing the normalizing factors η1 and η2, and
the likelihood of the reading given the loop map. Using the weight update Equation 5.20
is computationally expensive, due to the need of computing η1/η2. For this reason, in our
approximated approach, we just drop the term η1/η2, having

w
(i)
t = w

(i)
t−1p(zt | x(i)

t ,m
(i)
loop) (5.21)

We observed in practical experiments that the normalizing constants in Equation 5.20
have only minor influence in the weight computation. In Figure 5.9 we compared the varia-
tions of the particle weights w(i)

t /w
(i)
t−1 during a loop closure, using the partial weight evalu-

ation and full one of Equation 5.20.
Additionally we measured the KLD distance of the weight distribution computed using

the two weight update equations and the approximated one. The KLD distance is a measure
of similarity among probability distribution: its value is 0 when the two distributions are
identical, while it is infinity when the two distributions are totally different. A value of 0.02
means that dropping the term η1/η2 has not a big effect.



70 5. Introspective Filter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

im
po

rt
an

ce
 w

ei
gh

t

time

approximated
exact

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

time

approximated
exact

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

im
po

rt
an

ce
 w

ei
gh

t

time

approximated
exact

Figure 5.9: Weight approximation. The graphs show the evolution of the weight variation

w
(i)
t /w

(i)
t−1 of three different particles during a loop closure. The blue line shows the weight

variation computed using Equation 5.20, while the red line shows the weight variation com-

puted using Equation 5.21. The observation along the trajectories of the particles under the

two different weighting strategies and the sequence of the observations are the same. The

top images show typical results, the bottom one depicts one of the worst result during our

experiments.

Likelihood Evaluation in a Single Loop Closure Point Let assume thatmloop is the same
for all of the particles, up to a translation. Let tE be the time index in which the robot first
acquired the part of the environment described by the patch, and tC the time in which it
re-enters. Our representation ensures the following equation to hold:

m
(i)
E 	 x(i)

tE ' m
(j)
E 	 x(j)

tE . (5.22)

Here i and j are two particle indices, while x(i)
tE and x(j)

tE represent the corresponding robot
pose hypotheses at the loop entrance. Let the robot trajectories of the two particles along the
loop be x(i)

tE:tC and x(j)
tE:tC . Since we know that, with respect to the closing patch, x(i)

tE and x(j)
tE

are the same point, we can evaluate the likelihood of the particle j by attaching its trajectory
x

(j)
tE:tC to x(i)

tE , and computing the likelihood with respect to the map computed for the particle
i. This is done in the following way:

1. compute the overall displacement for the particle for which the likelihood have to be
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evaluated δ(j) = x
(j)
tC 	 x(j)

tE .

2. evaluate the pose of the particle j according to the particle i x(j,i)
tC = x

(j)
tE ⊕ δ(j)

3. evaluate the approximated weight as p(zt|x(j,i)
tC ,m

(i)
E )

Likelihood Evaluation under Small Uncertainties in the Loop Closure Point

The procedure described above is correct only if we know the loop closing patch. In the gen-
eral case the uncertainty at the loop entrance can be big, and there can be different closure
points according to the robot pose distribution during closure. We can still restrict the eval-
uation to the known loop closure case, but we need to split the evaluation of the particle’s
likelihoods in several known-closure evaluations. In our representation the only information
needed for executing the previously described procedure is the index of the patch in which
the closure occurs.

However, mloop can spread over different patches. There are situations in which the
closure map of different particles is constituted by the same indices, since different robot
pose hypotheses are approaching to the closure from different directions. In order to restrict
ourselves to the known loop closure point case we have to group the particles into sets so
that all of the particles belonging to the same set can be considered to enter in the loop
from nearby locations. The idea is, for each particle i and each patch in m(i)

loop to consider

the distances among the locations of the patches and the robot pose x(i)
tC . We compute a

fingerprint for the closure map of a particle by sorting the indices of the local map patches
according to the measured distances. Subsequently we can partition the particles in groups
having the same fingerprint. Finally we compute a loop map for a randomly selected particle
within each cluster. The likelihoods of the other particles are evaluated within each group
using the previously described procedure. The process of building a fingerprint is sketched
in Figure 5.10.

Loop Assessment

When a loop is found, the difference among the weights of the particles starts to increase.
Accordingly Neff drops. When the value of Neff is below a given threshold we perform a
resampling action. The resampling kills most of the wrongly aligned particles and replicates
the good ones. At this point the loop is assessed, and some of the groups can have no particles
in it. At this point all of the non-empty groups are translated into particle clusters. The graph
of each newly created cluster is modified in order to reflect the topological modification in
the map. This is done by adding an edge between the current vertex and the vertex associated
to the loop entrance in the maps. Subsequently the new clusters are added to the represen-
tation. Observe that, in case of ambiguities in the loop closure, all the different topological
hypotheses are tracked.

5.5 Situation Assessment
All of the derivations made in the previous section require that the robot knows if it is in an
exploration state, it is localizing or it is currently closing a loop (Assumption 5.1). Here, we
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Figure 5.10: Fingerprint computation. a) Two trajectory/map instances before closing a loop.

b) The computation of the two fingerprints and the corresponding grouping. The clustering

of the topologies is done through the fingerprints.

describe how to distinguish the different cases. Detecting the first two situations can be done
in a straightforward way by comparing the area covered by the current observation and the
map constructed to far.

Slightly more complicated is to decide whether or not the robot is closing a loop. To
make this decision, we apply the approach proposed by Stachniss et al. [Stachniss, Hähnel, &
Burgard, 2004] in the context of exploration with active loop-closure. To determine whether
there exists a possibility to close a loop we consider two different representations of the
environment. Each particle s maintains an occupancy grid map m[s] and a topological map
G[s] during the mapping task. The vertexes in G[s] represent positions visited by the robot and
the trajectory of particle s corresponds to the edges in G[s]. New nodes are created and added
to the graph structure whenever the robot moved for a certain distance or it cannot observe
any previously created node.

Figure 5.11 shows such a graph for one particular particle during different phases of the
mapping process. In each image the topological map G[s] is depicted on top of metric map
m[s]. To motivate the idea of our approach, consider the left image of Figure 5.11. Here the
robot is almost closing a loop. This can be detected by the fact that the length of the shortest
path between the current pose of the robot and previously visited locations in the topological
map G[s] is large, whereas it is small in the grid-map m[s]. Thus, to determine whether or not
a loop closure can take place we compute for each sample s the set I(s). This set of positions
of interest contains all nodes that are close to the current pose x[s]

t of particle s based on the
grid map m[s] but are far away given the topological map G[s]:

I(s) = {x[s]
t′ ∈ nodes(G[s]) | distm[s](x[s]

t′ , x
[s]
t ) < c1 ∧

distG[s](x[s]
t′ , x

[s]
t ) > c2} (5.23)

Here distm(x1, x2) is the length of the shortest path from x1 to x2 given the grid map and
distG(x1, x2) the shortest path based on the topological map. The terms c1 and c2 are con-
stants that must satisfy the constraint c1 < c2.
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Figure 5.11: The red/gray circles and lines in these three images represent the nodes and

edges of G[s]. In the left image, I(s) contained two nodes and in the middle image the robot

closes the loop to reduce its uncertainty. After this it continues to explore new terrain (right

image).

If I(s) 6= ∅, there exist metrical shortcuts from x
[s]
t to the positions in I(s). These short-

cuts represent edges that would generate a cycle in the graph structure of G[s] and therefore
constitute an opportunity to close a loop (compare Figure 5.11). To determine when to switch
back from the loop-closing state to the localization state, we analyze the evolution of the like-
lihood computed in the closing map for a given time interval. Once the likelihood of the best
particle is higher than a threshold for a long time, we assess the loop closure and switch back
to a localized state.

5.6 Overall Algorithm

In this section we present the overall algorithm. For clarity of presentation we omit the
memory management operations, like patch sharing, however in our implementation both the
patches, and the cluster’s graphs are represented as shared structures.

In Algorithm 4 we present the top level routine which is used for updating the filter state.
The purpose of the algorithm is to give an high level intuition on how the things work, rather
than a procedure literally describing all of the steps.

In addition to the previously described structures, for each cluster Ck we update the fol-
lowing variables:

• dk: the patch directory, which is a coarse resolution grid map, in which each cell
contains the set of patch indexes that cover the cell.

• jk: the patch index around which the local map is constructed.

• rk: the index of the best particle in the cluster.

• tmk: the temporary grid map used for constructing the new patches when augmenting
the map.

• mk: the cluster’s local grid map;
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Algorithm 4 is executed each time the robot has traveled for a minimum distance, and it
has acquired a new laser scan. For each cluster, a scan matcher guess of the reference particle
is computed, by considering the cluster’s local map. Using such a guess the state transition
(localization, augmention or loop closing) of the mapping system is determined, and the
corresponding update is performed. The resampling is performed whenever the overall Neff

goes below a given threshold. As a result of the resampling, the clusters which are not
referenced by any particle are suppressed.

Due to the complexity of the algorithm we show the fragments for handling the different
situations: localizationUpdate(...), augmentUpdate(...) and loopUpdate(...), in Algorithm 5,
Algorithm 6 and Algorithm 7. The first two fragments explicitly follow the ideas in Sec-
tion 5.4. Conversely, the loopUpdate(...)) fragment performs an heterogeneous sequence of
operations, which have been explained in several sections of this chapter.

In the following we organize those operations, and discuss the loop closure handing de-
scribed in Algorithm 7. Observe that the following operations are executed for each cluster
in which a closure is detected. First, the fingerprints of the closure are computed. The finger-
prints partition the indexes of the particles pointing to the original cluster’s particle indexes
(Ik) in sets sharing the same topological structure: {f1, ..., fq}. Each of those sets is then
treated independently, by performing the following steps:

• A loop map mclosure is computed, according to a randomly selected particle belonging
to the partition.

• The weights of the particles within a partition are then evaluated according the parti-
tion’s closure map mclosure.

• New edges are computed, in order to reflect in the topology the loop closure.

• A new cluster Cnew is created from the originating cluster Ck, and the computed edges.

• The new particles are computed by the old ones, and are setted to belong to Cnew.

Finally, the original cluster is replaced by the set of clusters created by the loop closure, and
the structures are updated accordingly.

Computational Complexity

The asymptotic computational complexity can be derived by considering the time of each
operation in the overall algorithm. Analyzing the latter, we find that:

tOverall ∼ k(tScanMatcher + tComputeTransition + tFixedDepthV isit +
+ max{tLocalization, tAugmenting, tLoopClosing}) +
+tNeff + tResampling (5.24)

where k stands for the maximum number of clusters and the subscripts to the diverse proce-
dures. The time for scan matching, compute transition, and visiting the graph are bounded, as
they refer to the local property of the environment and thus they do not depend on its structure
(such as length or number of cycles). We now analyze the time of the different situations. In
localization we have the following complexity

tLocalization ∼ |Ik|+ |LocalMap|+ |Scan| (5.25)
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Algorithm 4: Approximated Particle Filter
Input:
ClusterSet : Ct−1 = {C1, . . . , Cq} the previous step clusters

DirectorySet : Dt−1 = {d1, . . . , dq} the previous step patch directory

PatchIndexSet : Jt−1 = {j1, . . . , jq} the local patch index of each cluster

ParticleIndexSet : Rt−1 = {r1, . . . , rq} the reference particle index in each cluster

MapSet : TMt−1 = {tm1, . . . , tmq}, the temporary maps for the clusters

MapSet :Mt−1 = {m1, . . . ,mq}, the local maps for the clusters

SampleSet : St−1, the previous step particles

Observation : zt, the current laser scan

Motion : ut, the current odometry measure

Output:
ClusterSet : Ct
DirectorySet : Dt
PatchIndexSet : Jt
ParticleIndexSet : Rt
MapSet : TMt

MapSet :Mt

SampleSet : St
forall Ck ∈ C do1

ParticleIndexSet : Ik = {i|s(i)
t−1 =< x

(i)
t−1, k, l

(i)
1 , . . . , l

(i)
Nk

>}2

Pose : x̂k =scanmatch(x(rk)
t−1 ,m

(rk), zt, ut)3

Transition : τ =computeTransition(xk, Ck, dk, jk)4

PatchIndexSet : localIndexes =fixedDepthVisit(Ck, jk)5

if τ == localizing then6

localizationUpdate()7

else if τ == exploration then8

explorationUpdate()9

else if τ == loopClosing then10

loopClosing()11

end12

end13

double : Neff =computeNeff(St)14

if Neff < T then St =resample(St)15



76 5. Introspective Filter

Algorithm 5: localizationUpdate()

double : δw = p(zt, x̂k,m(rk))1

Pose : δk = x̂k 	 l(rk)
jk

2

forall i ∈ Ik do3

Pose : x(i)
t = l

(i)
rk ⊕ δk4

Sample : s(i)
t =< x

(i)
t , k, l

(i)
1 , . . . , l

(i)
Nk

>5

double : w(i)
t = w

(i)
t−1δw6

St = St ∪ {s(i)
t }7

end8

PatchIndex : jnew
k =closestPatch(x̂(i)

t , zt, patchIndexes, Ck)9

if jk! = jnew
k then10

// Changing the Active Vertex

Map : mnew
k =computeLocalMap(Ck, rk, jnew

k ) // recompute local map11

Map : tmnew
k = emptyMap12

tmnew
k =registerScan(x̂k, zt, tmk)13

TMt = TMt ∪ {tmnew
k }14

Mt =Mt ∪ {mnew
k }15

else16

tmnew
k =registerScan(x̂k, zt, tmk)17

TMt = TMt ∪ {tmnew
k }18

Mt =Mt ∪ {mnew
k }19

end20

Jt = Jt ∪ {jnew
k }21

Dt = Dt ∪ {dk}22

Ct = Ct ∪ {Ck}23



5.6. Overall Algorithm 77

Algorithm 6: explorationUpdate()

// Adding New Patch

Map : tmnew
k =registerScan(x̂k, zt, tmk)1

Patch : Pnew =tempToMap(tmnew
k )2

tmnew
k = emptyMap3

Cluster : Cnew
k =insert(Ck,Pnew)4

PatchIndex : ĵnew
k =indexOfPatch(Cnew

k ,Pnew)5

Map : mnew
k =computeLocalMap(Cnew

k , rk, ĵ
new
k )6

Pose : δl =patchCenter(Pnew)	x̂k7

TMt = TMt ∪ {tmnew
k }8

Mt =Mt ∪ {mnew
k }9

Jt = Jt ∪ {jnew
k }10

Dt = Dt ∪ {updateDirectory(dk, x̂k, zt)}11

Ct = Ct ∪ {Cnew
k }12

// Sampling new poses

Covariance : Σ13

Pose : µ14

double : δw = p(zt, x̂k,m(rk))15

< Σ, µ >=computeProposal(x(rk)
t−1 ,m

(rk), zt, ut)16

forall i ∈ Ik do17

Pose : x(i)
t = x

(i)
t−1 ⊕ (samplePose(Σ, µ)	x(rk)

t−1 )18

PatchLocation : l(i)new = x
(i)
t ⊕ δl19

Sample : s(i)
t =< x

(i)
t , k, l

(i)
1 , . . . , l

(i)
Nk
, l(i)new >20

double : w(i)
t = w

(i)
t−1δw21

St = St ∪ {s(i)
t }22

end23



78 5. Introspective Filter

Algorithm 7: loopUpdate()

// Update the weights according to mlocal

double : δw = p(zt, x̂k,m(rk))1

SampleSet : S ′t = {}2

forall i ∈ Ik do3

Pose : x(i)
t = l

(i)
rk ⊕ δk4

Sample : s′(i)t =< x
(i)
t , k, l

(i)
1 , . . . , l

(i)
Nk

>5

double : w(i)
t = w

(i)
t−1δw6

S ′t = S ′t ∪ {s(i)
t }7

end8

// New clusters creation

PatchIndexSet : localIndexes =fixedDepthVisit(Ck, jk)9

SetPartition : F = {f1, ..., fq} =fingerprintPartition(dk,S ′t, zt)10

forall fi ∈ F do11

PatchIndexSet : K =computeClosure(S ′t, zt, dk)−localIndexes12

Cluster : Cnew =connectEdges(Ck,K)13

ClusterIndex : u =computeClusterIndex(Cnew)14

SampleIndex : h =drawFromIndexSet(fi)15

PatchIndex : c =computeClosestPatch(x(h)
t ,K)16

Jt = Jt ∪ {c}17

Map : mclosure =computeMap(Ck,K, h)18

forall j ∈ fi do19

Pose : x(j,h)
t = l

(h)
c ⊕ (x(j)

t 	 l(j)c )20

double : w(i)
t = w

(i)
t p(zt|mclosure, x

(j,h)
t )21

Sample : s(j)new
t =< x

(i)
t , u, l

(i)
1 , . . . , l

(i)
Nk

>22

St = St ∪ {s(j)new
t }23

end24

SampleIndex : ru =bestSample(fi,S ′t)25

Rt = Rt ∪ {ru}26

tmnew
u = emptyMap27

TMt = TMt ∪ {tmnew
u }28

mnew
u =computeLocalMap(Cnew, ru, c)29

Mt =Mt ∪ {mnew
u }30

Ct = Ct ∪ {Cnew}31

end32
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where |Ik| stands for the number of particles belonging to the k-th cluster, |LocalMap| is the
dimension of the local map and |Scan| is the number of readings. Both, the local map dimen-
sion and the number of readings, are fixed and do not depend on the specific environment to
be mapped, so the localization complexity is O(|Ik|). In augmenting we have the following
complexity

tAugmenting ∼ |Ik|+ |LocalMap|+ |Scan|+ tComputeProposal (5.26)

where |Ik| stands for the number of particles belonging to the k-th cluster, |LocalMap| is
the dimension of the local map and |Scan| is the number of readings. Both, the local map
dimension and the number of readings, are fixed and do not depend on the specific environ-
ment to be mapped. The time for computing the proposal is also bounded and do not depend
on the environment, but nevertheless is very time consuming (This will be reconsider in the
followings), so the augmenting complexity is O(|Ik|). In the loop closing we have

tLoopClosing ∼ |Ik|+ |LocalMap|+ |Scan|+ tFixedDepthV isit +
+|Fk|(|ClosureMap|+ tRebuildDirectory) (5.27)

where |Ik| stands for the number of particles belonging to the k-th cluster, |LocalMap| is the
dimension of the local map, |Scan| is the number of readings, |Fk| is the number of generated
fingerprints and |ClosureMap| is the dimension of the closure map. The local and closure
maps dimension, the number of readings and the time for visiting the graph are fixed and do
not depend on the specific environment to be mapped. The time for rebuilding the directory
depends on the number of patches presented and so on the length of the path. |Fk| depends
on the structure, but is bounded by |Ik|, thus resulting in a complexity of O(|Ik| · |Patches|),
where |Patches| represents the current number of patches. The time for computing neff
tNeff is O(n) where n is the number of particles, and the time for resampling tResampling is
O(n · |Patches|). Considering that k · |Ik| = n and that resampling occurs only in loop clos-
ing events, the overall complexity is O(n) during the normal behavior and O(n · |Patches|)
in loop closing. Moreover, in typical settings, all the cost are small but the time for comput-
ing the proposal, the number of fingerprint generated are small compared to the number of
particles we have a complexity of O(k) in normal behavior and of O(k · |Patches|) in loop
closing.

5.7 Experiments

The proposed approach has been evaluated with several experiments performed on datasets
acquired using real robots and in simulation. In particular our approximated approach was
able to estimate maps that were topologically correct and showed a good metric quality.

The test datasets are available to the SLAM community[Howard & Roy, 2003], and are
becoming an important testbed for validating the performances of a SLAM algorithm. With
the proposed technique it has been possible to build accurate maps in real time of environ-
ments whose size was 250 × 250 meters. The mobile bases used for acquiring the data are
ActivMedia Pioneer 2 AT, Pioneer 2 DX-8, and iRobot B21r, equipped with SICK PLS or
LMS range finders.
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Approximated approach Rao-Blackwellized particle filter
Environment Result particles Result particles

Intel Lab 30 15

ACES building 30 30

Bruceton mines 50 30

MIT Killian Court 1000 120

Table 5.3: This table summarizes the number of particle required for generating a good map,

for several environments, using the presented approximated approach, and a straightforward

RBPF implementation in [Grisetti, Stachniss, & Burgard, 2005]

5.7.1 Number of Particles

The proposed approach introduces several approximations to the implementation of a RBPF
algorithm for grid maps. In order to capture the errors introduced by the used approximations
one can conjuncture that a higher number of particles has to be used. In order to quantitatively
measure the validity of the introduced approach, we compared it with the RBPF implemen-
tation of Grisetti et.al [Grisetti, Stachniss, & Burgard, 2005]. Using the two approaches we
compared the number of particles required for achieving a correct map. The results are sum-
marized in Table 5.3. It turns out that the increase in the number of particle required by the
approximated algorithm is less than one order of magnitude.

However, the performances decreases in environments in which the static assumptions
are violated, or in situations in which the local assumption does not hold. In particular this is
true in extremely cluttered and noisy environments, for instance when the robot perceives the
grass in a field. In this case, minimal differences of the particles positions within the local map
can lead to completely different proposal distribution. Errors can arise if a single proposal is
computed and propagated to all of the particles. This is the reason of the big gap among the
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Table 5.4: Comparison of memory and computational resources based on the MIT dataset

using a PC with a 1.3 GHz CPU.
#particles runtime max. memory

our approach 2.000 56 min 210 MB

our approach 1.500 51 min 200 MB

our approach 1.000 41 min 180 MB

our approach 500 35 min 165 MB

RBPF 150 (memory swapping) 2.9 GB

RBPF 80 300 min 1.5 GB

RBPF 50 190 min 1 GB

particles required by the two approaches for computing the MIT map. The windows and the
mirrors in that environment makes it challenging for an RBPF mapper which uses a shared
proposal distribution having a single mode. However, this problem will be solved in future
versions, in which we plan to compute a multi-modal proposal in the Mapping Situation.

5.7.2 Mapping Experiments
The approach was validated on several logs available on [Howard & Roy, 2003]. The pro-
posed technique allows to generate high quality maps of large scale environments, in one
order of magnitude less time than previous state-of-the-art approaches. This is obtained by
the combination of an improved proposal and approximated map representations. In Fig-
ure 5.12 and Figure 5.13 some of the generated maps are shown.

5.7.3 Performances
The second experiment is designed to show the advantages of our approach when compared
to RBPF mapper without our optimizations. To compare the results, we used the open-source
RBPF mapper [Stachniss & Grisetti, 2004]. We compared the overall time, needed to correct
the MIT Killian Court dataset and the amount of memory used to store the environment
representation. This was done using a (comparably slow) PC with a 1.3 GHz CPU and 1.5
GB RAM. The results of both mapping approaches are summarized in Table 5.4. Since
the approximated proposal is not as accurate as the original one, we need more particles
to achieve the same to robustness in filter convergence and quality of the resulting maps.
However, we can maintain more than one order of magnitude more particles while requiring
less runtime and memory. In all our experiments, this sufficiently accounted for the less
accurately drawn samples.

The savings on runtime are mainly caused by transforming a computed proposal distri-
bution so that it can be used for several particles instead of computing it from scratch. The
memory savings are due to the fact that all particles within a cluster can share their map
model. Furthermore, the memory usage and runtime of our approach grows much slower
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Figure 5.12: Some of the maps generated by the proposed approach: the Intel Lab, the ACES

Building at the university of Texas, the Edmonton convention center, and the Bruceton mines.
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Figure 5.13: The map learned by our approach, using data acquired at the MIT Killian Court.

The top picture shows the final result. The bottom picture shows the internal algorithm rep-

resentation.
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Figure 5.14: This plot depicts the number of patches in the memory and the number of

clusters over time for the MIT dataset using 1500 particles.

when adding particles. The reason is that the complexity of our filter grows mainly with the
number of topological hypotheses (particle clusters) which need to be maintained and not
directly with the number of samples. Notice that the maximum memory usage shown of our
approach is much higher than the typical one. There exist a few high peaks in the mem-
ory usage which arise from a loop-closure where several clusters are temporarily created but
deleted after a few steps (compare Figure 5.14). The typical memory usage is around 30% of
the maximum usage.

Figure 5.14 depicts the number of patches in the memory and the number of clusters
during the estimation process of the MIT dataset with 1.000 particles. As can be seen, the
number of clusters is typically small until a loop-closure occurs. At this point, the number of
clusters increases, but only for a short period of time since unlikely clusters vanish quickly.

5.8 Connections with Previous Works

The approach presented in this chapter integrates techniques which have been proposed in
the context of hierarchical approaches [Thrun, Burgard, & Fox, 2000],[Gutmann & Konolige,
1999] discussed in Subsection 3.3.8, and ideas coming from the Rao-Blackwellized Frame-
work. In particular the idea of tracking the robot pose posterior using a particle filter has
been initially proposed in [Thrun, Burgard, & Fox, 2000] and the map representation within
a single cluster is similar to [Gutmann & Konolige, 1999]. Moreover, the idea of performing
an explicit loop closure is common with both [Thrun, Burgard, & Fox, 2000] and [Gutmann
& Konolige, 1999].

However, the technique discussed in this chapter presents several differences with re-
spect to the above works. In our approach, the whole estimate is carried on using a Rao-
Blackwellized particle filter in which each particle has its own map instance. This makes it
possible to avoid the optimization step which revises the trajectories in the past. The uncer-
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tainty reduction after a loop closure is achieved by the particle suppression produced by a
resampling step. Although the proposal distribution is computed based on a single hypothese
per cluster, such a proposal is translated according to each sample in the cluster, in order
to obtain a sample dependent proposal. This operation is allowed by the local consistency
assumption. The loop closure events are recognized as the unique factors which can brake
such an assumption. However, in this case the local consistency is recovered by a clustering
operation which partitions the samples within a cluster into sets having a locally similar map.
Moreover, we introduce a localization phase, in which the map hypotheses are not modified.

5.9 Conclusions
In this chapter, we presented an introspection analysis that allows efficient optimizations for
Rao-Blackwellized SLAM on grid maps. We are able to update the complex posterior with
substantially less resources by performing the computations only for a set of representatives
instead of for all potential hypotheses. We proposed an alternative way for representing a
distribution over grid maps which needs only a fraction of the memory resources used by
previous approaches. Moreover, we proposed an efficient way for updating such a represen-
tation.

The key idea is based on an analysis of the mapping process which allows us to perform
filter updates conditioned to the state of the mapping system: localization, mapping or loop
closing . Using this insight, we are able to obtain clusters of particles that share a compact
map representation as well as an informed proposal distribution to sample the next generation
of particles.

With our optimizations, we are able to maintain between one and two orders of magni-
tude more samples and at the same time require less memory and computational resources
compared to other state-of-the-art Rao-Blackwellized mapping techniques.

The approach has been implemented, tested, and evaluated based on real robots and stan-
dard log files used within the SLAM community to demonstrate the accuracy as well as the
benefits of our system.
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Chapter 6

Motion Clustering and
Incremental Estimation

6.1 Introduction

When the robot moves in unknown terrain, the uncertainty in its position grows, due to the
noise in the odometry sensor and non deterministic effects of the world (e.g. wheel slippage).
A first way to reduce this uncertainty is to use exteroceptive sensors to keep track of the robot
position over time. When the robot is equipped with range sensors, a common solution is to
match two consecutive scans. The most popular of scan matching methods is the Iterative
Closest Point (ICP) algorithm [Zhang, 1994].

When operating in urban environments, the detection and the correct motion estimation
of cars, people and other dynamic objects can be essential for the safety of the robot and
humans nearby. In the presence of dynamic objects, ICP might fail since the presence of
spurious dynamic objects can influence the computation of the robot movement. To tackle this
problem, current techniques [Hähnel et al., 2003b; Wolf & Sukhatme, 2005] try to detect the
parts of the laser scan that are caused by dynamic objects and eliminate them from the robot’s
motion estimation. Despite the importance of the object detection and tracking problem, most
techniques proposed thus far rely on rather ad hoc heuristics and manual parameter tuning.

In this chapter, we address the problem of vehicle tracking in both static and dynamic
environments. We show how to compute a local transformation between consecutive robot
poses and its uncertainty. This stochastic relationship can be then incorporated into an opti-
mization framework, together with global relationship to provide a consistent map (see Chap-
ter 8 for more details on map optimization).

Since ICP can be considered a reliable technology for scan matching in static environ-
ment, the main focus of this chapter will be on how to estimate the robot motion in dynamic
ones. Therefore, we present a technique for detecting and estimating the motion of dynamic
objects in urban environments based on laser range data. Figure 6.1 shows an example where
our robot is facing an intersection while a car is passing by. We can see, that despite the
moving object, the static part of the map is correctly aligned and the car detected. We cast

89
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this latter problem as a clustering procedure, where associated points in consecutive laser
scans are clustered according to their motion patterns. Common clustering techniques such as
EM [Dempster, Laird, & Rubin, 1977] and K-Means [Duda, Hart, & Stork, 2001] assume that
points in the data set are independent. Since there is a strong spatial correlation between laser
points located nearby, this assumption can severely jeopardize the consistence of these proce-
dures. Frequently, laser returns are generated by rigid objects, thus obeying the Gestalt prin-
ciples of proximity and common fate [Koffka, 1935]. Semi-supervised clustering [Wagsta
et al., 2001; Basu, Banerjee, & Mooney, 2002; Basu et al., 2006] addresses the independent
data assumption by enforcing several constraints among cluster assignments. However, these
constraints are usually given by an expert and not extracted from the data. We propose a
semi-supervised clustering procedure based on Conditional Random Fields (CRFs) [Lafferty,
McCallum, & Pereira, 2001]. This significantly simplifies the modeling process and allows
the specification of more complex constraints to capture particular aspects of the data. In the
particular application of motion clustering, motion patterns are represented by their parame-
ters such as rotation and translation. Our method is able to determine the number of clusters
and the corresponding motion patterns while concomitantly computing their parameters. One
of the main problems in most of the clustering procedures is to determine the right number of
clusters. We provide a simple solution for this problem based on the likelihood of the cluster
assignment. This measure is computed automatically during inference in the probabilistic
graphical model.

6.2 Conditional Random Fields
Since our technique is based on Conditional Random Fields (CRFs), we briefly review the
main concepts and how to perform parameter learning and inference in these models.

CRFs are undirected graphical models developed for labeling sequence data [Lafferty,
McCallum, & Pereira, 2001]. CRFs directly model p(x|z), the conditional distribution over
the hidden variables x given observations z. This is in contrast to generative models such as
Hidden Markov Models or Markov Random Fields, which apply Bayes rule to infer hidden
states [Rabiner, 1989]. Due to this structure, CRFs can handle arbitrary dependencies be-
tween the observations z, which gives them substantial flexibility in using high-dimensional
feature vectors.

The nodes in a CRF represent hidden states, denoted x = 〈x1,x2, . . . ,xn〉, and data,
denoted z. The nodes xi, along with the connectivity structure represented by the undirected
edges between them, define the conditional distribution p(x|z) over the hidden states x. Let C
be the set of cliques in the graph of a CRF. Then, a CRF factorizes the conditional distribution
into a product of clique potentials φc(z,xc), where every c ∈ C is a clique in the graph and
z and xc are the observed data and the hidden nodes in the clique c, respectively. Clique
potentials are functions that map variable configurations to non-negative numbers. Intuitively,
a potential captures the “compatibility” among the variables in the clique: the larger the
potential value, the more likely the configuration. Using clique potentials, the conditional
distribution over hidden states is written as

p(x | z) =
1

Z(z)

∏
c∈C

φc(z,xc), (6.1)

where Z(z) =
∑

x

∏
c∈C φc(z,xc) is the normalizing partition function. The computation of
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this partition function can be exponential in the size of x. Hence, exact inference is possible
for a limited class of CRF models only.

Potentials φc(z,xc) are described by log-linear combinations of feature functions fc, i.e.,

φc(z,xc) = exp
(
wT
c · fc(z,xc)

)
, (6.2)

where wT
c is a weight vector, and fc(z,xc) is a function that extracts a vector of features

from the variable values. Using feature functions, we rewrite the conditional distribution in
Equation 6.1 as

p(x | z) =
1

Z(z)
exp

{∑
c∈C

wT
c · fc(z,xc)

}
(6.3)

6.2.1 Inference
Inference in CRFs can estimate either the marginal distribution of each hidden variable xi or
the most likely configuration of all hidden variables x (i.e., MAP estimation), as defined in
Equation 6.3. Both tasks can be solved using belief propagation (BP) [Pearl, 1988], which
works by sending local messages through the graph structure of the model. Each node sends
messages to its neighbors based on messages it receives and the clique potentials, which are
defined via the observations and the neighborhood relation in the CRF.

BP generates exact results in graphs with no loops, such as trees or polytrees. As our
model iterates inferences in a chain graph, BP obtains exact results by propagating messages
forward and backward in the chain. In our experiments, we compute the MAP clustering
assignment using the max-product version of BP.

6.2.2 Pseudo-Likelihood Parameter Learning
The goal of CRF parameter learning is to determine the weights of the feature functions used
in the conditional likelihood (see Equation 6.3). CRFs learn these weights discriminatively by
maximizing the conditional likelihood of labeled training data. While there is no closed-form
solution for optimizing Equation 6.3, it can be shown that Equation 6.3 is convex relative to
the weights wc. Thus, the global optimum of Equation 6.3 can be found using a numerical
gradient algorithm. Unfortunately, this optimization runs an inference procedure at each
iteration, which can be intractably inefficient in our case.

We therefore resort to maximizing the pseudo-likelihood of the training data, which is
given by the sum of local likelihoods p(xi | MB(xi)), where MB(xi) is the Markov blanket
of variable xi: the set of the immediate neighbors of xi in the CRF graph [Besag, 1975].
Optimization of this pseudo-likelihood is performed by minimizing the negative of its log,
resulting in the following objective function:

L(w) = −
n∑
i=1

log p(xi | MB(xi),w) +
(w − w̃)T (w − w̃)

2σ2
(6.4)

Here, the terms in the summation correspond to the negative pseudo log-likelihood and
the right term represents a Gaussian shrinkage prior with mean w̃ and variance σ2. With-
out additional information, the prior mean is typically set to zero. In our approach, we use
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Figure 6.1: A sequence of three consecutive scans obtained by a car navigating in a urban

environment. The car is facing an intersection while another one is passing by. The different

colors indicate different scans. The laser returns caused by the moving car are indicated by

the red square.

unconstrained L-BFGS [Liu & Nocedal, 1989], an efficient gradient descent method, to op-
timize Equation 6.4. The key advantage of maximizing pseudo-likelihood rather than the
likelihood of Equation 6.3 is that the gradient of Equation 6.4 can be computed extremely ef-
ficiently, without running an inference algorithm. Learning by maximizing pseudo-likelihood
has been shown to perform very well in different domains; see [Kumar & Hebert, 2003;
Richardson & Domingos, 2006; Friedman, Fox, & Pasula, 2007; Ramos, Fox, & Durrant-
Whyte, 2007].

6.3 Motion Estimation in Static Environment
In static environments, the motion of the robot is computed by finding a configuration in the
solution space that, if applied to one scan, obtain a maximum overlap with the other one.
More formally, the scan matching problem can be expressed as:

Given two sets of 2D data (i.e. a reference scan, s and a current scan, g), deter-
mine a 2D rigid motion (a translation T and a rotation Rφ) that makes the scan
data overlapping the reference data.
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In typical scenarios, however, the perfect overlap is not possible, thus the objective be-
comes to transform s in such a way that the distance between the points in g and the trans-
formed points in s is minimized. While several algorithms exist (see Subsection 3.3.1 for
more details) in this Chapter we focus on the ICP family of algorithms. A naive ICP algo-
rithm has a simple iterative structure. First, a set of correspondent points between the scans
is computed and then, the sensor displacement is estimated by minimizing the error of the
correspondences. This process is repeated until convergence.

More formally, let {s1, . . . , sN} be the points in the current scan s and {g1, . . . , gM}
the points in the reference one, each points belonging to R2. Let q ∈ SO(3) be a robot
configuration, with qk the estimate at iteration k. The ICP algorithm is a simple iterative
procedure that iterate two basic steps: association and minimization. In each iteration k,
points are associated among each other by minimizing the following function

ri = arg min
sj

∑
sj∈s
‖qk ⊕ sj − gi‖2 . (6.5)

Once the correspondences are obtained, an incremental solution is estimated by again
minimizing the function

qk+1 = arg min
q

∑
si,gi

‖q ⊕ si − gi‖2 . (6.6)

Usually, for non linearity issues, the estimation in Equation 6.6 is done step by step. This
means that every iteration of the ICP algorithm computes only the transformation between
the configuration of step k and k + 1, thus minimizing

qmin = arg min
q

∑
si,gi

‖q ⊕ (qk ⊕ si)− gi‖2 . (6.7)

and computing qk+1 = qmin ⊕ qk.

Since this incremental estimate is performed often, the angular displacement is usually
small. For this reason, the nonlinear function can be effectively linearized and the optimiza-
tion is performed using linear regression techniques. By doing so, Equation 6.7 becomes

qmin ≈ arg min
q

∑
si,gi

‖q̂0 ⊕ (qk ⊕ si)− gi + Ji(q − q̂0)‖2 . (6.8)

= arg min
q

∑
si,gi

‖Jiq − (Jiq̂0 + gi − q̂0 ⊕ (qk ⊕ si))‖2 (6.9)

where Ji = ∂⊕
∂q

∣∣∣
q̂0,si

is the Jacobian of the compound operator and q̂0 is the linearization

point, often set to 0. By stacking everthing together, we obtain the typical form for linear
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regression

E = Hq (6.10)

H =

 J1

...
JN

 (6.11)

E =

 J1q̂0 + g1 − q̂0 ⊕ (qk ⊕ s1)
...

JN q̂0 + gN − q̂0 ⊕ (qk ⊕ sN )

 (6.12)

whose solution is
qmin = [HTH]−1HTE (6.13)

However, especially when the robot is rotating on itself, this linearization can fail, thus
in this thesis we use notions from rigid body physics to compute a closed form minimization
step for the non linear problem. In physics terms, the scans are rigid bodies and each corre-
spondence from a point gi to a point sj can be seen as a linear momentum applied at the point
sj of the rigid body s. If we consider discrete time step, this velocity will bring the point
sj on the point gi in one step. The minimization is then computed by computing the overall
momentum (translational and angular) using the diverse correspondences ones. As for the
linear velocity, we have that

vT =
1
N

N∑
i=1

gi − qk ⊕ si (6.14)

For the rotational one, we need to first compute the angular momentum L and the inertia I of
the rigid body. These quantities are computed with respect to a rotational center, which is the
robot position q̂0 (usually set to 0).

vA =
‖L‖
I

(6.15)

L =
N∑
i=1

(q̂0 ⊕ si − q̂0)× (gi − q̂0 ⊕ si) (6.16)

I =
N∑
i=1

‖gi − q̂0 ⊕ si‖2 (6.17)

where we are only concern about the module of the rotational acceleration, since we already
know that the vector is perpendicular to the motion plane.

6.3.1 Covariance Estimation
Since we want to use the local estimation obtained from the scan matcher algorithm into an
optimization framework, a measure of the uncertainty of this estimation is needed. A first,
straightforward solution is the one introduced in [Lu & Milios, 1994] and then improved
in [Bengtsson & Baerveldt, 2001]. The key idea is that if we can estimate the displacement
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by casting a linear regression problem, we can use the same theory to compute a covariance
estimation as well. This can be easily done as

Σq = [HTH]−1σ2 (6.18)

An unbiased estimate of σ2 is given by

σ2 ≈ 1
N − 3

∑
si,gi

‖qmin ⊕ si − gi‖2 (6.19)

being N the number of correspondences and qmin the solution of the minimization step.
Since we are not relying on the linear regression framework, in this thesis we adopted the

approach of Censi [Censi, 2007a]. Let be q̂ the solution of the scan matching algorithm A
and z the observations. We have that q = A(z) = argminq J(q, z), where J(q, z) represents
compactly the error term in Equation 6.6.The first order approximation of the covariance
matrix would be

Σq ≈ ∂A

∂z
Σz

∂A

∂z

T

(6.20)

A solution for the partial derivative of the function computed by the algorithm, A, is not
easily computed, since the function itself is not in a closed form. However, A(z) and z are
bounded by an implicit function, since we know that the derivative of the error function is
zero at the solution q. They show that using the implicit function theorem, is possible to
express the partial derivative of A in terms of partial derivatives of J , obtaining

Σq ≈
(
∂2J

∂q2

)−1
∂2J

∂z∂q
Σz

∂J

∂z∂q

T (∂2J

∂q2

)−1

(6.21)

6.4 Motion Clustering and Estimation
In this section the CRF model is extended to address the problem of semi-supervised clus-
tering. Although we describe the methodology for the specific case of motion clustering, the
technique is general and can be applied to any clustering problem where the data has some
kind of dependence. See Appendix A for a more general description of CRF-Clustering.

In the following, we will explicitly use the rotational R and translational T parameter of
the configuration q for clarity reason. Moreover, in the clustering framework, no distinction is
made among the robot and the other moving objects. After clustering, the motion of the robot
is computed in a way similar to a χ2 test. We compute the Mahalanobis distance between the
odometry reading and the estimated object motions and classify the motion with the lowest
distance as the robot motion.

6.4.1 Model Definition
CRF clustering can be understood as a CRF model where local potentials are functions of
the hidden variables and, conversely, the hidden variables depend on the local potentials. In
the case of motion clustering, the hidden variables are the motion parameters (rotation and
translation) and, for every laser beam, there is one hidden variable representing the cluster
assignment. In general, there is one hidden variable for every point to be clustered and hidden
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Figure 6.2: Graphical representation of the CRF-Clustering model. The hidden states xi
indicate the corresponding clusters for each of the pairs of points in the scan. The observa-

tions zi correspond to local features such as the distance between the points in the pair after

the transformation given by the a cluster parameters (rotation and translation). Rj and Tj
indicate respectively rotation and translation for the clusters.

variables to characterize each cluster. Figure 6.2 shows the graph representation of the model.
The hidden variables xi represent the cluster assignment and the hidden variables Rj and Tj
represent rotation and translation respectively, for each cluster in the model. These are the
cluster characteristics. (We use blank nodes to represent hidden variables and gray nodes to
represent observed variables.) The observations zi are computed from the laser scan pair and
are described in the section below.

The inputs to the algorithm are two scans, a reference scan g and second scan s. The
objective is to transform parts of s according to the clustering assignments in such a way that
the distance between the points in g and the transformed points in s is reduced. Therefore,
for every point si, a hidden variable xi is created indicating the clustering assignment. The
error function that CRF Clustering minimizes during inference is then:

E =
M∑
j=1

∑
si∈Cj

‖gi − (Tj +Rjsi)‖2 (6.22)

where Cj is the set of points in s assigned to cluster j and ‖.‖ denotes the L2-distance.
CRF clustering can be trained as a normal CRF using pseudolikelihood. In our experi-

ments, the model parameters were learned using this technique from of a training data set.

6.4.2 Local Feature
The current implementation of CRF clustering has one local feature. It is also possible to add
more local features describing, for example, the geometry of sets of points or even appearance
from vision data. However, to reduce the inference time we consider only the local feature
described below:

Distance between laser points: This feature measures the distance between points in
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the laser scan g and the associated points in the laser scan s after rotated and translated
according to the cluster assignments. As different parts of s are assigned to different clusters
this transformation does not preserve the original shape of s. Instead, it tries to break s
into parts with the same motion pattern. The equation below describes how this feature is
computed for every pair of points i:

fdist (Rj , Tj , xi, si, gi) =
‖Tj +Rjsi − gi‖2

σ2
, (6.23)

where σ2 is the variance of the distances in the training data and xi defines the cluster j the
particular point i belongs to. Rj and Tj are computed from the points assigned to the cluster
j by minimizing the sum of distances between points s and corresponding g:

Rj , Tj = arg min
R,T

∑
sj ,gj∈Cj

‖T +Rsj − gj‖2 . (6.24)

The parameters R and T are computed in the same way as described in the previous
section. This is possible, since within one point cluster the environment can be considered
static.

6.4.3 Pairwise Features
The pairwise ensures consistency of the clustering assignments by incorporating neighbor-
hood information. For example, if a pair of points i is assigned to cluster j it is very likely
that the neighbor pair i+ 1 will also be assigned to the same cluster. This assumption is true
whenever pairs i and i + 1 belong to the same rigid object. In a common laser scan this is
a reasonable assumption since it is expected that clusters . We define three pairwise features
with different properties as follows:

Neighbor Feature: This is a simple pairwise feature returning two possible values. These
values are parameters of the model, estimated during learning. More precisely, the feature is
defined as:

fneigh (xi, xi+1) =
{
λ1, if xi = xi+1

λ2, if xi 6= xi+1
(6.25)

where λ1 and λ2 are the parameters of the feature.

Weighted Neighbor Feature: This feature is similar to the Neighbor Feature except that
the output is weighted by the Euclidian distance between the neighbor points. The idea is to
capture the notion that neighbor points further away are less dependent than neighbor points
nearby.

fWneigh (xi, xi+1, si, si+1) =
{
λ1/∆, if xi = xi+1

λ2/∆, if xi 6= xi+1
(6.26)

where ∆ is the L2 distance between points si and si+1: L2 = ‖si − si+1‖2.

Stiffness Feature: This feature tries to enforce stiffness for points that belong to the same
cluster. The feature computes the difference of distances between neighbor points before and
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after the transformation given by the cluster assignment. The idea is that if the points belong
to the same cluster, their distances must be preserved after the transformation. This feature
can be written as:

fstiff =

∥∥∥‖si − si+1‖2 − ‖(Tj +Rjsi)− (Tk +Rksi+1)‖2
∥∥∥

σ2

2

(6.27)

where Rj , Rk and Tj , Tk are the cluster parameters given by the hidden variables xi and
xi+1 respectively.

6.4.4 Inference Procedure

Performing inference in this model is different from performing inference in a normal CRF.
Since the values of the observations change with the hidden states (recall that the local fea-
tures depend on the cluster assignments and cluster parameters) normal BP cannot be applied.
Instead, we formulate a different message passing procedure where with an initial random
cluster assignment, the local features are computed. Messages are then propagated back and
forward in the chain model to estimate new values for the hidden variables x. The new cluster
assignments x are used to compute new cluster parametersR and T . Features are recomputed
with these new parameters and we iterate this procedure until convergence. Before each up-
dating ofR and T the merging procedure described in the next section is performed to reduce
and collapse clusters until the right number is obtained.

Figure 6.3 illustrates the inference process with the three stages: 1) Features are com-
puted from initial values of R and T . 2) Messages are propagated forward and backward in
the chain graphical model to obtain the MAP assignment for each data point. 3) The cluster
assignments are used to recompute R and T and these processes are iterated until conver-
gence. After step 3, a merging procedure can be applied to collapse clusters with similar
characteristic in order to obtain the right number of clusters.

6.4.5 Computing the Number of Clusters

We now describe a procedure to discover the correct number of clusters. One of the nicest
properties of the proposed clustering procedure is to have a probabilistic evaluation of the
clustering assignments. The algorithm outputs a likelihood for each laser beam indicating
how certain it is regarding the cluster assignment. This can be used to formulate a simple
merging procedure where beams that have the probability mass divided into two or more
clusters indicate potential cluster candidates for merging.

This idea is the core of the proposed merging procedure. The algorithm is initialized
with a large number of clusters (more than the number of moving objects) and as it proceeds,
clusters are merged until the correct number is found. In the current implementation, the
average cluster assignment likelihood is initially computed. When the average likelihood is
below a threshold (usually 0.9), the corresponding cluster can be merged to another. The
most probable cluster to merge into is the cluster having most of the remaining probability
mass. The pseudocode for the merging algorithm is presented below:
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Figure 6.3: Inference procedure in the CRF clustering model. The parameters of the clusters

R and T are used to compute the local features z (top). With the observations z computed,

a conventional message passing procedure in a chain graphical model is used to compute the

MAP assignments for the clusters x (middle). Finally, observations and clusters assignments

x are used to recompute the cluster parameters R and T (bottom).
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Algorithm 8: Merge Clusters
Input: Likelihood for Cluster Assignments p and Cluster Assignment C

Output: New Cluster Assignment C ′

foreach cluster j do compute the average likelihood Lj ;1

foreach Lj > 0.9 do2

Find the most compatible cluster k from C;3

Merge cj and ck in the new C ′;4

end5

Returns C ′;6

6.5 Experimental Evaluation
In this section we analyze convergence properties of the algorithmand compare our algo-
rithm to K-Means and to the Consistency-Based Detector (CBD) [Wang et al., 2007] for the
problem of motion clustering 1.

Experiments were performed in an urban environment with a car and consist of 30 pairs
of laser scans selected from a trajectory of about 2 km. The data reflect typical driving
situations such as cars overtaking other cars, crossing by and moving on the opposite lane.
For each pair, the scans were taken at 2m to 4m apart which corresponds to the vehicle motion
during the data acquisition. Laser points for each pair were manually assigned to different
clusters for ground truth purposes. To evaluate how the approach deals with imperfect data
associations between laser scans, we ran our algorithm with both the true, manually generated
associations between laser points (CRF-T), and the associations computed automatically via
CRF-Matching (CRF-M) [Ramos, Fox, & Durrant-Whyte, 2007].

6.5.1 Convergence Properties
In most of the experiments the algorithm converged between 3 and 7 iterations. One particular
case is illustrated in Figure 6.4. The algorithm is initialized with 10 clusters which are merged
as algorithm iterates. The pictures show the likelihood of each laser beam be assigned to the
clusters (dark red is high likelihood, dark blue is low likelihood). Based on the likelihoods,
the merging procedure described before is able is combine different clusters to obtain the
correct solution.

6.5.2 Cluster Evaluation Measure
Once we obtained a clustering solution, we compared it with the ground truth assignments.
To evaluate the clustering performance, we used the V-measure [Rosenberg & Hirschberg,
2007], an external, entropy based, cluster evaluation measure. This measure, V , is the har-
monic mean of homogeneity H and completeness C of the cluster assignments.

1CRF-Clustering also estimates the motion for detected objects which is not directly possible with the other

methods without using an additional filtering technique
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Figure 6.4: Typical convergence behavior for CRF clustering. The pictures show the like-

lihoods for the clustering assignment. Dark red represents higher likelihoods and dark blue

lower likelihoods. After the first iteration, the probability mass is distributed among 8 clus-

ters. In the second iteration, clusters 1 and 8 are merged into cluster 4. In the third iteration,

cluster 2 is merged into cluster 9, which gives the final result with 3 clusters only. This

sequence corresponds to the scan of Figure 6.6.
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Using this measure we avoid some problems that standard“precision” and “recall” have:

• clusters containing few points do not influence the measure;

• matching ground truth clusters and provided ones;

• dealing with homogeneity and completeness of clustering.

V-measure computes a measure of homogeneity and completeness of the clustering so-
lution. Let C be the distribution of the classes (groundtruth) and K the distribution of the
clusters. Homogeneity reflects the fact that points in one cluster should belong only to one
class. This is measured by considering the normalized conditional entropy of the class distri-
bution, given the clusters

h =

{
1 if H(C,K) = 0
1− H(C|K)

H(C) else (6.28)

Symmetrically, completeness reflects the fact that points in one class should be associated
only to one clusters. This is measured by considering the normalized conditional entropy of
the cluster distribution, given the classes

c =

{
1 if H(K,C) = 0
1− H(K|C)

H(K) else (6.29)

The V-measure is then computed as the harmonic mean of homogeneity and completeness

Vβ =
(1 + β)hc
(βh) + c

(6.30)

where β is a blending factor. For β > 1 completeness is weighted more strongly and for
β < 1 homogeneity is weighted more strongly. In our experiment we were interested in both,
so we set the blending factor to 1.

6.5.3 Comparison with Consistency-based Detection
In this section we compare CRF-Clustering with the consistency-based detector (CBD) intro-
duced in [Wang et al., 2007]. The CBD algorithm is a heuristic-based algorithm for detecting
moving objects in range data. The main concept behind the algorithm is that static objects
are consistent about the free space while dynamic objects are not. The major drawback of
this algorithm is that it is based on two main assumptions: a good estimate of the robot dis-
placement is available; the object movements are orthogonal to the observed shape. In more
detail, let g be a reference scan and s the current one. Suppose an estimated pose of the robot
is known so that s and g are aligned w.r.t. the static objects. On a first stage, the algorithm
classifies the points in s that fall within the free space2 of g as dynamic. Points in s are then
segmented in connected regions and a segment is classified as dynamic if more than half of
its points are classified as dynamic. While the first assumption often holds in real situations
(use of inertial units, GPS, scan matching), the second is more subtle and can create problems
especially in outdoor environments.

2the free space is defined as the space travelled by the laser beams before encountering an obstacle
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CBD K-Means CRF-T CRF-M
mean std mean std mean std mean std

H 0.8207 0.2790 0.4154 0.2719 0.9832 0.0493 0.8624 0.0521

C 0.8926 0.2976 0.9503 0.0652 0.9899 0.0288 0.9031 0.0312

V 0.8503 0.2901 0.5372 0.2470 0.9864 0.0395 0.8859 0.0407

Table 6.1: Comparison between CBD, K-means and CRF clustering

Figure 6.5 shows a typical example in which the second assumption is violated. The
robot is approaching an intersection while another car is moving in front of it. We see (top)
that CBD is not able to detect the car. That is because most of the car measurements are not
classified as dynamic due to the big overlap. On the other hand, CRF-Clustering (bottom) is
able to correctly detect the moving car by clustering laser points according to their motion
pattern.

Table 6.1 shows a numerical comparison between the two techniques. Mean and stan-
dard deviation for homogeneity, completeness and V-measure are presented for the different
approaches. CRF-Clustering obtains better results in both cases, with true data association
(CRF-T), and data association using CRF-Matching (CRF-M).

6.5.4 Comparison with Modified K-Means
In this section we compare CRF-Clustering with a modified version of the K-Means algo-
rithm. K-Means is a well known and standard algorithm for clustering data points into k
partitions, minimizing the squared error function

E =
k∑
i=1

∑
xj∈Si

‖xj − µj‖2 (6.31)

where there are k clusters Si and µi is the mean of all the points xj ∈ Si. However, K-Means
cannot be directly applied to our motion clustering scenario. The problem is that we are
clustering points (which are a pair of 2D objects) according to their motion (which is a 3D
quantity). For this reason, we modified the original formulation, minimizing Equation 6.22
instead of Equation 6.31. The first modification lies in the way the cluster centroids are
computed. In our case, the centroids represent the rigid body transformation underlying the
object movement (rotation and translation), which is computed according to Equation 6.24.
Once the centroids are obtained, we associate point i to the cluster which minimize

argmin
j
‖gi − (Tj +Rjsi)‖2 (6.32)

where (gi, si) is the point pair, Tj and Rj are translation and rotation of the j-th motion
cluster.

The main problem of K-Means and similar algorithms is that they do not consider rela-
tions between points in the data. More specifically, they assume that points are independent.
When dealing with moving objects, neighbor observations are spatially dependent as they
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Figure 6.5: Example of consistency-based (CBD) results (top) and CRF-Clustering results

(bottom). Red dots indicate the current scan, blue dots the previous one (mostly hidden). The

colored markers around dots indicate the cluster assignments. It can be noticed that CBD fails

to detect the moving object (all points in the same green cluster). The same problem does not

exist with CRF-Clustering which explicitly models the object motion. The static points are in

the green cluster, moving object points in the purple cluster. The bounding box on the right

image indicates the moving object being correctly detected.



6.6. Connection With Previous Works 105

represent measurements from the same entity. Discarding this information can lead to very
noisy and inhomogeneous clustering results. This is clearly depicted in Figure 6.6, where
we compare the result of K-Means and CRF-Clustering on a typical case. As can be seen,
K-Means (top) produces a very noisy result, while the result provided by CRF-Clustering
(bottom) is more accurate and homogeneous. Both algorithms were initialized with the max-
imum number of dynamic objects (three in our case) and we can see that CRF-clustering is
able to detect the correct number of clusters.

Finally, Table 6.1 shows a numerical comparison between the two techniques on the data
collected by our vehicle. We show the mean and standard deviation for homogeneity, com-
pleteness and V-measure for the different approaches. Note that K-Means results are based
on the manually generated ground truth associations.

6.6 Connection With Previous Works
The first approach to scan matching with ICP is the work of Lu and Milios [Lu & Milios,
1994]. They combine the normal Nearest Neighbor search of ICP with angular constraints
in the Iterative Dual Correspondence (IDC). Pfister et al. [Pfister et al., 2002] propose a
weighted algorithm, where the influence of each point in the error formulation is weighted
according to uncertainty like measurement noise, sensor incidence angle and correspondence
error. This error is then minimized using numerical optimization methods. An improved
metric is introduced by Minguez et al. [Minguez, Montesano, & Lamiraux, 2006]. The cor-
respondences between scans are established with this measure and the minimization of the
error is also carried out in terms of this distance. Censi [Censi, 2008] introduced a point to
line metric and an exact closed-form for minimizing it.

Some researches focused on estimating the uncertainty of the scan matching algorithm.
The most rigorous study of the covariance estimation problem has been developed by Bengts-
son et. al [Bengtsson & Baerveldt, 2001]: nevertheless, the two methods proposed there (the
Hessian method and the Offline method) have some drawbacks. The closed-form Hessian
method over-estimates the covariance in some cases. The Offline method gives reasonable
results but cannot be used online, as it is based on a computationally expensive procedure.
Censi [Censi, 2007a] presented a method for estimating the covariance of the ICP algorithm,
based on the analysis of the error function being minimized.

As for the dynamic environments, detection and tracking of moving objects using laser
range-finders has been extensively studied [Bar-Shalom & Li, 1995]. A first class of algo-
rithms addresses the detection problem only in terms of separating the data into two main
clusters: static and dynamic. The dynamic points are then filtered out to obtain a better mo-
tion estimation for the moving platform. Hähnel et al. [Hähnel et al., 2003b] presented an
offline, EM based approach for filtering moving points in range data. The approach of Wolf
and Sukhatme [Wolf & Sukhatme, 2005] maintains two separate maps for the static and the
dynamic parts of an environment. The maps are updated using a modified version of the
occupancy grid framework which also infers the nature of the points (static or dynamic).

Another class of algorithms focuses on the object segmentation and tracking. Anguelov
et al. [Anguelov et al., 2002] use simple differencing for detecting the moving points and
then apply a modified EM algorithm for clustering the different objects. However, the al-
gorithm needs the number of objects as input and does not consider interactions between
neighbor points. In [Schulz et al., 2001], a feature based approach is used to detect the mov-
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Figure 6.6: Modified K-means results (top) and CRF-Clustering results (bottom). The dif-

ferent symbols indicate the cluster assignment and the red dots indicate the current scan. It

can be noticed that the clustering solution found by K-Means is significantly noisy (various

different clusters). This is avoided with CRF-Clustering with the use of the neighborhood

dependencies. The bounding box on the bottom image indicate the moving object being

correctly detected.
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ing objects. These objects are then tracked using a joint probabilistic data association filter
(JPDAF). The features used are the local minima of the laser data. While such an approach
works well in the presence of people, it is not applicable to larger moving objects such as
cars, buses and so on. Wang et al. [Wang et al., 2007] defined an integrated solution for the
mapping and tracking problem: static points are used for mapping while dynamic ones for
tracking. The detection and segmentation of dynamic points is based on data differencing and
consistency-based motion detection. Points are classified in static and dynamic and clustered
in segments. When a segment contains enough dynamic points is considered dynamic. Mon-
tesano et al. [Montesano, Minguez, & Montano, 2005] improved the classification procedure
described in [Wang et al., 2007] by jointly solve it in a Bayesian framework. Moreover, they
integrated the mapping and tracking within a path planner for indoor navigation.

Although most of these approaches focus on how to track different objects under different
hypotheses, the detection part is mainly based on heuristics. The main technique used is based
on map differencing, where points are considered dynamic if there is some inconsistency
between two consecutive scans. Moreover, the detection routine is only able to observe the
actual position of the object (given a stable reference point) and the velocities are computed
by the tracking algorithm. In this paper we address the problem in a more formal way: points
are clustered according to their inherent motion while computing the motion parameters.

6.7 Conclusions
In this chapter, we have explained how to obtain an incremental estimate of the robot motion,
both in static and dynamic environments. When the only moving object in the environment
is the robot itself, the problem has been deeply studied, and we described state of the art
solutions for both the mean and covariance estimate.

Regarding dynamic environments, we have introduced CRF-Clustering, a novel technique
for clustering dependent data into homogeneous partitions. Although this is a general clus-
tering algorithm, in this chapter we show its capability to detect and predict the motion of
moving objects from range data. Existing approaches for moving object detection such as
CBD are mainly based on scan consistency, classifying points as dynamic if they violate the
free space of the map. In contrast, our technique explicitly reasons about the underlying mo-
tion of the objects, thus being more effective for the problem. By employing Conditional
Random Fields, our approach is able to consider relations among different points in the scans
and different properties of the moving objects. Moreover, our algorithm is able to estimate
the underlying motion of different objects, which can be used as input to a filtering technique.

Our experiments show that CRF-Clustering performs better than CBD techniques, espe-
cially in situations where the motion of the object is not orthogonal to the observed shape.
We also showed that this problem is not trivial from a clustering perspective. Classical al-
gorithms, such as K-Means, fail to provide homogeneous clusters, as they assume that data
points are independent.
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Chapter 7

Loop Closing as Lazy Localization

7.1 Introduction

In the previous chapter, we discussed how to compute an incremental estimate of the robot
motion, both in static and dynamic environments. While this process alleviates the error pro-
duced from the odometry and robot motion, it does not eliminate it. The estimation error still
accumulate over time and, especially in big and featureless environment, leads to inconsistent
global estimates (see Figure 7.1).

To overcome this problem, global constraints has to be added to the system. In a filtering
framework, those constraints are implicitly created within the measurement model. Features
are associated to observations regardless of when or where they have been observed. How-
ever, data association becomes more difficult when features comes from different parts of the
map. As also stated in Chapter 5, the current observation is associated with diverse landmarks
cliques. These cliques are usually uncorrelated among each other. Here, data association is
harder as each clique can push the system towards different part of the solution space. This
fact, convinced various researcher to address the loop closing as a standalone problem and
different solutions have been proposed [Neira, Tardos, & Castellanos, 2003; Fox et al., 2003;
Levin & Szeliski, 2004; Newman, Cole, & Ho, 2006b]

At this point, it seems that the loop closing problem is the same as global localization
one. However, despite some similarity, the two problems have different requirements. In
localization, The map is known and complete, meaning that we know a priori that the robot
is operating within the environment and cannot be anywhere else. Moreover, localization
systems aim to locate the robot precisesly and at every time step. Loop closing is, informally,
a “lazy localization” problem: the answer can be given lazily, because the higher-level global
optimizer does not need this information with stringent time constraints. There is no need to
provide the robot position at every time step, the main point is that it has to be reliable and
correct.

Moreover, in order to use the loop closing constraints within either a filtering framework
or an optimization one, some information about the stiffness of the constraints should be
provided. This can be done by estimating a probability distribution of the closure point.

In this Chapter, we address the loop closing problem. We derive a novel formulation of

109
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Figure 7.1: An incremental estimate of robot position in a huge, ambiguous environment. As

can be seen, the approach was able to correct the local errors, but not the global ones. This

results in a map which is still inconsistent.

it in terms of smoothing and propose a technique for computing both the global loop closing
constraints and its uncertainty.

7.2 Global and Lazy Localization
SLAM methods that handle loop closing explicitly need a constraint between the current
pose of the robot and the old part of the map to ensure consistency of the overall map. When
the robot reenters a known area, a precise estimation of its position in the map is needed.
To provide a reliable estimate, the robot has to reobserve the environment and use these
observations to relocalize it self. Several authors casted this problem as global localization
on the map built so far [Gutmann & Konolige, 1999],[Fox et al., 2003], that is computing the
distribution

p(xn|y0:n,m) (7.1)

where 0 is assumed to be the time at which the localization procedure is activated, and m
is the map built before that time. When the pose is disambiguated, a new constraint can be
added to the global map graph. Note that Equation 7.1 is a filtering distribution: it is the
estimate of the last pose based on the past. We argue that in this context knowledge of the
smoothing distribution

p(x0|y0:n,m) (7.2)

would be more useful. The reason is readily explained: in most cases, a single-shot relocal-
ization is not reliable, and several data are needed to disambiguate the robot position. Given
that one should consider an interval of time, it is better to have an estimate of the robot pose at
the beginning of the interval, rather than at the end. To see why, consider the canonical exam-
ple of a loop closure in Figure 7.2. A global localization formulation would give a constraint
between xB and xF , resulting in an inconsistent map. The lazy localization formulation,
instead, returns a constraint between xA and xE , giving a better map estimation.

The two solutions, for time 0 and k, seems to be equivalent at first sight. However, we
argue that the solution should be the closure position and not the actual pose. Assume that
the robot re-enters a previously mapped area at time 0. A method that gives an estimate of
the pose at time 0 is more useful than a method that gives an estimate at time k. In fact,
all the information needed for loop closure is in the estimate of x0, and imposing a loop
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(a) Odometry data

(b) Enforcing B = F (c) Enforcing A = E

Figure 7.2: This picture illustrates the difference between modelling loop closing as smooth-

ing or as filtering. Figure 7.2(a) shows the the odometry data of a robot moving in a square

environment. The two paths A–B and E–F correspond to the same corridor; assume that the

robot can relocalize itself while traversing this corridor. If one models loop closing as fil-

tering, one would get the constraint B = F which corresponds to the resulting map in (b). If

one models loop closing as smoothing, the result is the constraint A = E, which results in the

more consistent map in (c).

closure constraint at time k would probably create an inconsistent map. The information lost
in closing at k is represented by the missed association during the path from 0 to k.

Not only the smoothing distribution is more useful, we will show it can also be computed
efficiently if a reasonably precise estimate of the incremental robot motion is available. An
example of this is the estimate given by a scan-matcher, which is already available at zero-cost
if localization is done as a subprocess of SLAM.

More formally, we are set to compute the distribution

p(x0|y0:n, s0:n,m) (7.3)

where s is an estimate of the incremental motion of the robot: si:j , xj 	 xi. We will
present three algorithms that compute Equation 7.3: the first two are slight modifications of
particle filters already studied in the literature, while the Frozen-Time Smoother is the novel
contribution of this thesis.
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From now on, we omit the map m from the equations, and use the abbreviations y: =
y0:n, s: = s0:n.

7.3 Particle Filter Approaches
In this section we develop two approximated solutions to the smoothing problem, as the cost
of an exact implementation using Monte Carlo techniques (particle smoother) is quadratic in
the number of particles.

The density in Equation 7.2 can be factored as

p(x0|y0:n)

=
∫
p(x0,x1|y0:n)dx1

=
∫
p(x1|y0:n)p(x0|x1,y0)dx1

= p(x0|y0)
∫

p(x1|y0:n)p(x1|x0)dx1∫
p(x1|x0)p(x0|y0)dx0

(7.4)

where the map, m, is omitted for clarity purposes. We have decomposed the problem into
a forward recursion up to p(xn|yn), which is solved by forward filtering, and a backward
recursion, p(xt+1|yt:n), which is solved by propagating the smoothed density at time t + 1
back to time t by using the motion model p(xt+1|xt). This factorization is the basis of the
Forward-Backward Smoothing algorithm. For some distribution family, this can be solved by
applying the Expectation-Maximization algorithm. However, there exist no optimal solution
to those integrals when using grid maps.

We decide to approximate the density with a sum of weighted samples

p̂(dx0|y0:n) =
N∑
i=1

w
(i)
0|nδ

(i)
x0

(dx0) (7.5)

where the importance weight are recursively defined as

w
(i)
t|n = w

(i)
t

 N∑
j=1

w
(j)
t+1|n

p(x(j)
t+1|x(i)

t )∑N
k=1 p(x

(j)
t+1|x(k)

t )

 (7.6)

withw(i)
n|n = w

(i)
n . A direct implementation of this filter incurs in aO(N3) cost, which can be

reduced to a O(N2) considering that the denominator of the right equation does not depend
on x(i)

t . Even with this simplification, the cost is still too expensive for using the algorithm
in practical application. A typical amount of particle for localization is in the order of 10000,
preventing a real time usage of the particle smoother.

7.3.1 Approximate Particle Smoothing
As a first approximation, we decide to use a slightly modified Monte Carlo localization al-
gorithm. The idea is that one can use a vanilla particle filter and remember the first pose of
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the particles. Then the distribution of the first poses, weighted according to the distribution
of the last poses, can be assumed as a crude approximation to Equation 7.3. In the following,
this is referred to as Monte Carlo Smoothing v1 (MCS-1).

The algorithm has a cost complexity O(N), thus the same complexity as Monte Carlo
localization. In fact, the algorithm is a variation of Monte Carlo localization, with the differ-
ence that we store, for each particle, also the initial pose. After filtering, we return the initial
pose of every particle, but with the weight of the particles on the last step. However, the sate
space is now the space of the whole trajectory and using a filtering approximation results in a
poor approximation of the true distribution. The dimension of the state space is exponential in
the length of this trajectory, so more particles than global localization are needed. Secondly,
the particles representing the initial pose do not “move” towards the most probable regions,
resulting in an overconfident estimate.

Algorithm 9: Monte Carlo Smoothing v1
Input: observation sequence y0:n and mapm

Output: weighted samples
{〈
x

(i)
0|n, w

(i)
0|n

〉}N
i=1

// Forward Filtering

for t← 0 to n do1

for i← 1 to N do2

sample x(i)
t from p(xt|x(i)

t−1);3

augment the trajectory x(i)
0:t;4

w
(i)
t ← p(yt|x(i)

t ,m);5

end6

resample the particles according to wt;7

end8

// Recovering the first poses

result = ∅;9

for i← 1 to N do10

result← result ∪
〈
x

(i)
0 , w

(i)
n

〉
;11

end12

return result;13

The following is the formal justification of the approximation. Consider the target distri-
bution in Equation 7.2, according to the Chapman-Kolmogorov equation with respect to x0,
we have

p(x0|y0:k) =
∫
p(x0|xk,y0:k)p(xk|y0:k)dxk (7.7)

Now note that the distribution p(xk|y0:k) is the filtering distribution, for which we have the
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particle representation

p(xk = x|y0:k) =
∑
i

w(i)δ(x− x(i)
k ) (7.8)

Here, we have written the free variable x explicitly, as we need it later. The other distribu-
tion in Equation 7.7 is p(x0|xk,y0:k), for which we implicitly have the following particle
approximation:

p(x0 = a|xk = b,y0:k) =
∑
j

δ((b	 a)− (x(j)
k 	 x(j)

0 )) (7.9)

which represent the displacement between the pose of particle j at time k and its stored first
pose at time 0. By putting Equation 7.8 and Equation 7.9 in Equation 7.7, one obtains:

p(x0 = a|y0:k) =
∫
p(xk = x|y0:k)p(x0 = a|xk = b,y0:k)dx (7.10)

=
∫ ∑

i

w(i)δ(x− x(i)
k )
∑
j

δ((b	 a)− (x(j)
k 	 x(j)

0 ))dx (7.11)

=
∑
i

w(i)δ(a− x(i)
0 ) (7.12)

As can be seen, that reflects the algorithm. The Dirac’s delta are centered on the first pose
of the particle, and the weights are the same of the filtering step. A concise description of the
algorithm is given in Algorithm 9

7.3.2 Improving Approximation by using a Scan Matcher
A less crude approach uses the assumption that the incremental estimate of the pose is precise.
The smoothing distribution can be factorized as

p(x0|y:, s:) =
∫
p(x0|xn,y:, s:)p(xn|y:, s:)dxn (7.13)

The factorization split the target distribution into the filtering distribution p(xn|y:, s:) and
the inverse informed motion model p(x0|xn,y:, s:). Intuitively, the question “Where was I
at time 0?”, is split into “Where am I now?” and “What was my incremental motion?”.

In SLAM, an incremental estimate is readily available as the scan-matcher result. If we
make the assumption that the error of the scan matcher is very small, we can approximate
p(x0|xn,y:, s:) as a Dirac distribution. Therefore, the integral in Equation 7.13 is greatly
simplified, and the target distribution is approximated by translating the estimate at time n
back in time according to the incremental estimate s0:n.

p(x0 = x|y0:k) =
∫
p(x0 = x|xk,y0:k)p(xk|y0:k)dxk (7.14)

=
∫ ∑

i

wiδ(x− xik)δ(xk 	 ŝ0:k)dxk (7.15)

=
∑
i

wiδ(x− (xik 	 ŝ0:k)) (7.16)
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This approach, which we call Monte Carlo Smoothing v2(MCS-2), is sketched as Algo-
rithm 10. The modifications with respect to a Monte Carlo Localization is that the incremen-
tal estimate is used, both for evolving the particles, and to translate them back to time 0. In
MCS-1 the particles do not “move” within the state space, eventually resulting in few of them
having non-zero importance weight. In MCS-2, thanks to the backward translation by the
scan-matcher result, the particles do “move” within the state space, resulting in more particle
diversity. This effect is depicted in Figure 7.4.

Algorithm 10: Monte Carlo Smoothing v2
Input: observation sequence y0:n, incremental estimate s0:n and mapm

Output: weighted samples
{〈
x

(i)
0|n, w

(i)
0|n

〉}N
i=1

// Forward Filtering

for t← 0 to n do1

for i← 1 to N do2

sample x(i)
t from p(xt|x(i)

t−1);3

w
(i)
n ← p(yn|x(i)

n ,m);4

end5

resample the particles according to wn;6

end7

// Backward Projection

result = ∅;8

for i← 1 to N do9

// Translate back in time

x
(i)
0|n ← x

(i)
n 	 s0:n;10

w
(i)
0|n ← w

(i)
n ;11

result← result ∪
〈
x

(i)
0|n, w

(i)
0|n

〉
;12

end13

return result;14

7.4 The Frozen-Time Smoother
In this section, we introduce the “Frozen Time Smoother” (FTS), an approximate algorithm
for the lazy localization problem.

For this algorithm to work, we need two assumptions.

• an estimate of the incremental pose of the robot is available, roughly precise during the
time it takes to localize (we will discuss the precision requirements later).
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• a fast way to compute a “translated” likelihood is available.

The first assumption is satisfied by using a scan matcher algorithm, or a visual odometry
one. As for the second, in this thesis, we use a Generic Hough Transform (GHT)-like [Bal-
lard, 1981] algorithm, whose input is raw data. If one wants to use features, a completely
equivalent algorithm that could be plugged here is the one described by Paz et al. [Paz et al.,
2005].

If the two assumptions hold, we can find a particularly simple factorization of the target
distribution. The sensor data yk can be considered independent when conditioning on both
the initial state x0 and the incremental motion sk:0:

p(x0|y:, s:) ∝ p(x0)
∏
k

p(yk|x0, s0:k) (7.17)

Again, using the Chapman-Kolmogorov equation to p(yk|x0, s0:k) with respect to xk, we
obtain

p(x0|y:, s:) ∝ p(x0)
∏
k

∫
p(yk|xk)p(xk|x0, s0:k)dxk (7.18)

Having a precise estimate of the robot motion, one can approximates the multi-step inverse
motion model p(xk|x0, sk:0) using a Dirac distribution

p(xk = a|x0 = b) ' δ(b	 a− sk:0) (7.19)

With this approximation, the integral in Equation 7.18 can be easily solve, obtaining

p(x0 = a|y:, s:) ∝ p(x0 = a)
∏
k

p(yk|xk = a⊕ s0:k) (7.20)

The right hand side is a product of “translated likelihoods”: each likelihood at time k is
translated by the motion s0:k. In short, because the incremental estimate is available and is
precise, we can compute the likelihood at time 0 very efficiently.

FTS uses a three-dimensional (x, y, θ) grid as the representation of the belief, at the freez-
ing time 0. The grid is used essentially as a voting space, therefore its resolution is relatively
unimportant (in the experiments, we set the resolution to 1m, 30deg). The grid will represent
in turn p(x0) (prior), p(x0|y0), p(x0|y0:1), etc. Note that the scans can be integrated in
arbitrary order, and some can be postponed or skipped altogether.

7.4.1 Translated Likelihood Computation by GHT
The map representation is contingent on using the GHT for computing the likelihood. Points
are sampled from the surfaces in the environment, and for these points the surface orientation
is estimated. The result is a “normal map”: a series of tuples 〈pj , αj〉 where p ∈ R2 is a
point on the environment surfaces and αj is the direction of its normal. An example of such
a map is shown in Figure 7.3. We remark that this is an extremely compact representation.
Every scan is converted in the same way to a local normal map. The local and the global
normal map are passed to the GHT algorithm.

The GHT creates hypotheses by considering all possible correspondences between the
local and normal map points. These hypotheses (can also be thought as ‘votes’) are accumu-
lated in a grid. At the end of the computation, one can assume that this is an approximation
to p(xk|yk).
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More in detail, if the i-th point of the local map corresponds to the j-th point on the global
map, then the pose of the robot must be

x̂k = (t̂k, θ̂k) (7.21)

where t̂k and θ̂k are given by:

θ̂k ← αj − αi (7.22)

t̂k ← pj − R(θ̂k)pi (7.23)

And now to the trick that makes everything work: because we know the motion the robot
did from x0 to xk, we can compute directly p(x0|yk). In the GHT loop, we simply translate
x̂k back by s0:k, to obtain the hypothesis for x̂k:

x̂0 ← x̂k 	 ŝ0:k (7.24)

After the distribution p(xk|y0) has been computed, this new information is integrated
in the belief by a simple multiplication, according to Equation 7.20. Algorithm 11 shows a
pseudo-code for FTS. The algorithm is not complex and can be described in a few lines of
text.

Algorithm 11: Frozen-Time Smoother
Input:

• a “freezing time” (0)

• a set of sensor scans y0, y1, . . .

• an incremental estimate of the pose s0:k

• (optional) a prior for x0

Output: a grid estimate of p(x0)

Create the reference normal-map refMap1

Initialize the belief bel to the prior p(x0)2

for some yk, in arbitrary order do3

Create a local normal-map localMap from scan yk4

p(x0|yk)← ght(refMap, localMap, ŝ0:k)5

bel ∗= p(x0|yk)/p(x0)6

end7

The computational complexity of FTS can be easily computed. At every iteration (one
for observation) the algorithm computes the GHT. GHT is essentially a double loop. The
outer loop iterates on the number of the global maps points, which is fixed and depends on
the dimension of the readings. The inner loop, instead, depends on the number of points in
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the map and grows linearly with it. As the map is built while the robot is moving, we can
say that the number of points in the map is proportional to the length of the robot trajectory.
The computational complexity of a naive implementation of FTS is then O(K), where K is
the number of readings used to built the map. This complexity, however, can be reduced if a
robot prior is used as a search area.

Function ght(refMap, localMap, ŝ)

for 〈pi, αi〉 ∈ localMap do1

for 〈pj , αj〉 ∈ refMap do2

// Compute an estimate of the pose at time k

θ̂k ← αj − αi3

t̂k ← pj −R(θ̂k) · pi4

x̂k ← 〈t̂k, θ̂k〉5

// Use the displacement ŝ and the estimate x̂k

// to compute the pose at time 0

x̂0 ← x̂k 	 ŝ6

// Add a vote for x̂0

buffer [x̂0] ++7

end8

end9

return buffer10

7.5 Discussion
Quantitative results are discussed in the next section. Here, we would like to point out some
interesting properties of FTF.

7.5.1 On the Use of a Grid
FTS uses a three-dimensional grid, but no expensive operation is performed on the grid. Com-
pare with using plain Markov localization, in which one has to perform a convolution on the
grid (prediction step), and compute the likelihood for every cell (update step). Also note that
Markov Localization would need small cells, or else it would make little sense to compute
the likelihood for a 1m × 1m cell.

Instead, FTS’s grid can be as coarse as the filter designer wants. The cell size does not
impact the speed of the GHT step1. The cost of weighting the grid by the likelihood does
depend on the grid resolution, but this cost is, in practice, negligible with respect to the GHT
step.

1 If one assume the software is running on an ideal Von Neumann machine with O(1) memory access.
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Moreover, the grid representation is easier to handle than particle distributions. The prob-
lem with particles is that they tend to concentrate on small parts of the state space after few
observations. If one uses too few particles to bootstrap the filter, it is likely that no particle
will be near the true solution: in few steps the distribution will suffer from particle deple-
tion. In actual implementations, this problem must be mitigated by either using a particularly
relaxed likelihood, or by injecting new particles in the distribution.

7.5.2 On the Assumption of a Precise Incremental Estimate
The MCS-2 and FTS methods assume the availability of a ‘precise’ incremental estimate. We
would like to make some remarks on the effect of the (inevitable) error on s.

Consider the approximation step in the FTS derivation: from Equation 7.18 to Equa-
tion 7.20, this term: ∫

p(yk|xk)p(xk|x0)dxk

is approximated by this term:
p(yk|xk 	 s0:k)

because p(xk|x0) is assumed to be a Dirac distribution according to the increment ŝ0:k.
If ŝ0:k is uncertain, then the translation operation should be followed by a ‘smoothing’

operation. Let ŝ be distributed as a Gaussian with covariance Σ. In our informal notation,
this would be

∫ p(yk|xk)p(xk|x0)dxk = p(yk|xk 	 ŝ0:k) ∗ N (0,Σ)

We do not do this smoothing operation yet. There are multiple ways this could be inte-
grated in the algorithm. The straightforward way would be, in the GHT step, to distribute
votes according to the distribution – but this would be expensive.

A different way would be to adjust the size of the grid. In the first step, we are integrating
y0 with ŝ0:0 = 0. Therefore, one could use a very fine-grained grid, as small as the sensor
is precise. In later iterations, the grid for p(x0|yk) should be made coarser. For example, if
ŝ0:k has a precision of 20cm, a grid cell should be around 20–40cm. Using a coarser grid will
take uncertainty of ŝ into account while not requiring more CPU.

7.5.3 On the Laziness of FTS

Both the PFs algorithm rely on a filtering stage which implies frequent integration of the
observations. On the contrary, FTS can integrate observation “distant” in time, as long the
scan-matcher is sufficiently precise.

Moreover, in FTS the scans can be processed in arbitrary order: the factorization in Equa-
tion 7.20 is, of course, commutative. While the typical case would be to integrate scans as
they are available, there is much freedom here. One can skip scans, or procrastinate and
postpone some, if there are not enough computational resources at the moment. For the
experiments, we integrated one scan every 5m and simply discarded the others.

The integration order being arbitrary hints to the fact that FTS has the same “considera-
tion” for every scan. This in contrast with any PF, where the initial observations are more
important than the last, as the first scans essentially choose which part of the state space will
be explored.
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7.5.4 On the Probability Distribution
FTS, and in similar way MCS-1 and MCS-2, not only provide a loop closing constraint, but
they compute a probability distribution of it. This distribution can be used in various way.
A first way, which is more specific to the work of this thesis, is to have a stochastic relation
between two poses. This kind of constraint is in the form

δij = xj 	 xi + ω (7.25)

where ω is a zero mean Gaussian noise with covariance matrix R. The parameter of this
relation are approximated with the first two moments of the grid (or particle) distribution.
It is worth to notice, that this works under the assumption that the posterior on the closure
point is unimodal. In the case of multimodal posteriors, a clustering algorithm needs to be
performed, in order to reduce the problem into several unimodal ones.

Another way of using this distribution is in a topological mapping problem. As pointed
out in [Ranganathan, 2008], it is possible to use a Rao Blackwellized particle filter to compute
a posterior over the possible map topologies. In such a framework, this distribution can be
used as an informed proposal distribution for the particle filter.

7.6 Experiments
We chose two logs from the Radish [Howard & Roy, 2003] repository. The first was collected
in an Intel building in Seattle. This is a building, of size 30m×30m, with office rooms, many
of which are very similar. Some are cluttered with object/people, and there are also curved
surfaces. In such environment, the typical situation is that there are many initial hypotheses
that gets quickly disambiguated.

The second log was collected in the Aces building at the University of Texas in Austin.
This is the typical ambiguous situation: in this 60m×60m environment, there is a symmetry
– a central room, from which four similar corridors depart, with other feature-less corridors
around. In this case, the typical situation is that a filter must keep a relatively small number
of hypotheses (2 or 4) for a long time, until there is enough data to completely disambiguate
the pose.

We used GMapping2 to process the logs, and we obtained two sets of data: the final
SLAM result, and an incremental scan-matching estimate. The SLAM result was used as the
map inputm to the algorithms, from which the PFs would create an occupancy grid, and FTS
creates the normal map. The scan-matching result was split into multiple chunks, with each
being an independent experiment. In each chunk, the robot traveled for about 30m. In total,
we obtained 20 chunks for Aces and 40 for Intel. Each method was given the global map and
one scan-matching chunk, and had to guess where the robot started.

FTS’s parameters were chosen as follows. The normal map has a resolution of one point
every 0.2m – this results in about 4000 points in the aces environment. The belief grid has a
resolution of 1m x 1m x 30deg. We integrate a scan every 5m, and discard the others.

As for the PFs, the occupancy grid has a resolution of 0.05m, the number of particles is
10000 (sufficient but not excessive for the environments considered. The scans are integrated
every 0.5m or 0.5rad, whichever comes first.

2http://openslam.org/

http://openslam.org/
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EXAMPLE OF FROZEN TIME SMOOTHER BEHAVIOR

Normal map

FTS uses a normal map as the environment

representation (above).

FTS’s state (A, C, E, F) is the belief on the

first pose of the robot, at the ‘freezing time’

0.

Thanks to the knowledge of the scan-matcher

distribution, scans can be integrated very in-

frequently (10m apart in this example).

(A) – It is not uncommon for FTS to guess in

one-shot: the true robot pose is indicated by a

marker, and the red square is the peak of the

distribution.

(B) – The vanilla GHT algorithm computes

p(xk|yk). Our modified version computes

p(x0|yk), based on the scan-matcher result.

(C) – After integrating two scans, the pose

is pretty much disambiguated. However, it

takes another two integrations of scans (E, F)

for the belief to go to zero in the other parts

of the state space.

Belief: p(x0|y0)
~nA

p(x0|y1)
~nB Belief: p(x0|y0:1)

~nC

p(x0|y2)
~nD Belief: p(x0|y0:2)

~nE Belief: p(x0|y0:3)
~nF

Figure 7.3: Example of Frozen-Time Smoother behavior.
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EXAMPLE OF APPROXIMATED MONTE CARLO SMOOTHING BEHAVIOR

Occupancy grid

Some execution steps of Monte Carlo

Smoothing v1 and v2 are depicted. The map

used is a conventional occupancy grid, where

blue (dark gray) identifies the unknown re-

gion. Figures A-C depict MCS-1, while fig-

ures D-F depict MCS-2.

Both algorithms converged to the same solu-

tion, which is the exact one. However, de-

spite the same initialization of the particles

(figures A and D), MCS-1 is more confident

than MCS-2, converging to a single particle.

MCS-1– Step 0
~nA

MCS-1– Step 8
~nB

MCS-1– Step 34
~nC

MCS-2– Step 0
~nD

MCS-2– Step 8
~nE

MCS-2– Step 34
~nF

Figure 7.4: Example of approximated Monte Carlo smoothing behavior
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Figure 7.5: Results for the Aces environment. In all the plots, the x axis measures the linear

distance along the chunk in meters; each chunk is about 30 meters long. The red dots are

individual samples; the black bold line is the samples average.

The most natural performance measure is the distance between the maximum-likelihood
pose estimated by the method, and the true pose. This is a quick measure that indicates
whether the method has converged near the true solution. Note, however, that this distance
measure could be misleading in ambiguous situations. For example, as can be seen in Fig-
ure 7.5, there are three cases in which FTS cannot disambiguate the pose by considering
only one scan every 5m, simply because there is not enough information. In those cases, the
‘true’ pose is actually the second highest peak of the distribution, but this cannot be seen by
considering only the distance measure. Therefore other statistics are needed.

To compute the following two measures in a consistent way, we converted the PF distri-
bution to a grid distribution with the same resolution as the grid used for FTS.

Another measure – less intuitive than the distance, but more correct – is the estimated
likelihood for the true pose. That is, if each method estimates p(x0 = x|y:, s:) = f(x),
we consider the score s = log f(x0), where x0 is the true pose. It can be shown that the
score is an approximation to the KLD distance between the belief and the true distribution.
In Figure 7.5, we see that the score is high, even in the cases for which the first peak is not
the true pose. In Figure 7.6, there is one case in which FTS’s distance is high and the score is
low: this is a genuine failure, caused by a corresponding failure of the scan-matcher during
the chunk (GMapping, employing a RBPF, can afford to have a non particularly robust scan
matcher).

It is interesting to note that the score values are similar among the three methods: this
reinforces our belief that they are computing the same distribution, albeit in completely dif-
ferent ways.

A measure that describes the character of the method is the entropy of the estimated
distribution. The entropy for the PFs quickly goes to zero, as particles tend to concentrate
in small areas of the state space. MCS-1 has a lower entropy than MCS-2, as the particles
do not “move” within the state space. Instead, for FTS, the distribution is very smooth and
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Figure 7.6: Results in the Intel environment. In all the plots, the x axis measures the linear

distance along the chunk in meters; each chunk is about 30 meters long. The red dots are

individual samples; the black bold line is the samples average.

non-zero practically everywhere. This gives a very high value of entropy. Note, however,
that large values of entropy do not imply bad precision. In fact, as can be seen by comparing
the distance and entropy graphs, for the first step, the entropy is high even when FTS did a
one-shot localization.

Finally, we do some consideration on the efficiency. On an Intel Core 2 Duo, with 2.0GHz
and 4Mb of cache, an iteration of FTS needed about 1.2s, while the PFs took about 2.1s. In
these experiments, FTS was fed about one fifth of the data fed to the PFs. Therefore, we
observed about an order of magnitude gain in efficiency. Note, however, that this kind of
benchmark is highly dependent on the implementation and the parameters used. For the PFs,
we used some old, well-honed source code with all the tricks we know for a particularly effi-
cient and robust implementation. For FTS, we did the straightforward naive implementation
of Algorithm 11. We are particularly happy about these numbers, as FTS is already quite
efficient, and there is a lot of space for improvement.

7.6.1 Connection with Previous Works

In Gutmann et al. [Gutmann & Konolige, 1999] loop closure is reduced to global Markov
localization in the partially built map. This is, of course, extremely expensive, therefore the
likelihood computation is approximated by correlation of the local map over the occupancy
grid for the global map, and such correlation is efficiently implemented using special-purpose
vectorization operations (MMX). After the robot is localized, the new constraint is added to
the global constraints of the map.

In Fox et al. [Fox et al., 2003], an important problem of loop closure is pointed out: the
robot might be outside the map built so far. They extended Bayesian localization by using
a different way of computing the likelihood, when the robot is an unknown area. In this
way, they reduced the number of false positive in the loop detection, which lead to enforcing
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wrong loop closing constraints.
In Neira et al. [Neira, Tardos, & Castellanos, 2003], the map is represented using features

(segments and corners). They handle loop closure explicitly by trying to match sets of fea-
tures in the local map to sets of features in the global map. For this, they use random samples
consensus, followed by a joint compatibility test. Clearly, if one has a feature map, the loop
closure problem can be solved easily and efficiently.

Visual loop closure was attempted in Levin and Szeliski [Levin & Szeliski, 2004], by
looking for correspondences between omnidirectional images. They used a distance matrix to
express similarity between all images, the quality of which is improved by imposing epipolar
constraints. They found out that off-diagonal elements are found when the same path is
traversed again.

In grid-based Rao-Blackwellized particle filters (RBPF) [Hähnel et al., 2003a; Grisetti,
Stachniss, & Burgard, 2005], in theory one does not need to explicitly handle loop closure.
Each particle represents an hypothesis on the trajectory: when the robot revisits parts of the
old map, only the particles with a good trajectory survive. However, in practice, there are
some complications. In RBPF the number of particles is limited by the available memory
and CPU. This means that there are typically as few as 50-100 particles representing all the
hypotheses on the trajectory. When a loop is closed, only very few of these particles will
have a non-zero likelihood, and therefore there will be a loss of diversity (particle depletion).
Stachniss et al. [Stachniss et al., 2005] addressed the problem by actively detecting loops and
then using techniques to restore particle diversity after closing the loop.

One of the problems to consider is that loop closure cannot be an instantaneous deci-
sion, because further data could disprove the identified closing point. Therefore, one should
keep different hypotheses on the map topology. Haehnel [Haehnel et al., 2003] extended
FastSLAM with lazy data association;

In Ho and Newman [Newman, Cole, & Ho, 2006b] loop closure is completely decoupled
from the incremental map estimation. They considered the environment as a collection of
discrete scenes, for which a distance measure can be defined. The resulting scene-to-scene
distance matrix is used to detect consistent sequences of scenes that indicate loop closure.

7.7 Conclusions

We presented an algorithm, called Frozen-Time Smoother, which can efficiently solve the
global localization problem when it is formulated as a smoothing problem, and a precise
incremental estimate of the robot motion is available. These assumptions hold when when
global localization is used for loop closing in SLAM,

Using this estimate, the GHT can be slightly modified to compute the distribution of the
pose at a certain “freezing time”, given a sensor reading collected much later in time.

We compared the FTS with the closest technique available in the literature. Under the
same assumptions of the FTS, we modified the Monte Carlo filter to obtain an approximated
solution to the smoothing problem. The experiments suggest that a naive implementation of
FTS is more efficient than an extremely optimized state-of-the-art Monte Carlo filter working
under the same assumptions.

Moreover, it has several other nice properties. The grid representation is efficient and
does not have the common problems of particle methods, like overconfidence and the need
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of a frequent update. Moreover, FTS has an intrinsic laziness, as it does not need frequent
updates and it can process data in arbitrary order.



Chapter 8

Probabilistic Map Optimization

8.1 Introduction

Map optimization is the process of combining local constraints (provided by the incremental
mapper) and global constraints (provided by the loop-closure algorithm) to obtain an overall
consistent map. This problem is usually solved using the so-called maximum likelihood (ML)
approaches. Instead of maintaining a posterior, the goal of these approaches is to calculate
the maximum likelihood map based on the observations of the robot and its motions. In ML
algorithms, the problem instances are typically described by a graph, whose nodes represent
either robot poses or landmark locations. An edge between two nodes represents a relative
measurement of them. Finding a maximum likelihood solution to this problem means to de-
termine the assignment of poses to the nodes of the graph which provides the best explanation
of the measurements. Traditional ML approaches assume the data associations as given and
focus mainly on estimating the position of the nodes, not their uncertainty. However, finding
potential data associations requires to estimate the marginal probability distribution over the
nodes locations. Still, once the ML configuration of the nodes is known, the marginals can
be computed by inverting the (sparse) information matrix of the system. Unfortunately, real
world problem instances are often described by graphs having thousands of nodes. Inverting
matrices of this size is computationally too expensive and other paths needs to be followed.

In this chapter we model the map optimization problem in probabilistic terms. We will
show that the SLAM graph define a Gaussian Markov random field (GMRF) and optimiza-
tion is just an inference problem over this field. This idea has originally been proposed by
Ranganathan et al. [Ranganathan, Kaess, & Dellaert, 2007], who model the full SLAM prob-
lem and utilized belief propagation as inference algorithm. In our work, instead, we focus
on the delayed state parametrization of SLAM, developing an unified parametrization for it.
Moreover, we describe a novel algorithm for computing the marginal covariances. Our ap-
proach outperforms the technique introduced by Ranganathan et al. [Ranganathan, Kaess, &
Dellaert, 2007] while keeping the same time complexity. Additionally, our algorithm is able
to obtain estimates which are closer to the exact ones and generally more conservative. This
is important when solving data association problems since over-confident covariances may
result in losing valid associations.

127
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8.2 Gaussian Markov Random Field

A general Markov random field (MRF) is a model for describing the joint probability dis-
tribution over set of random variables. More formally, a MRF represents the conditional
independence between variables using an undirected graph G = (V,E). Each vertex v ∈ V
in the graph represents a random variable. An edge {u, v} ∈ E between two nodes repre-
sents a dependency between the random variables u and v. The edges and the vertexes of the
graph are labeled with a set of potential functions φ defined over a subset of V . Conditional
independence is associated with graph separation. The Hammersley Clifford Theorem [Lau-
ritzen, 1996] stated that the graph separation relation in the graph is exactly the conditional
independence relation over V . In other words, suppose that xa, xb, xc are a set of random
variables and a, b, c ⊂ V the corresponding nodes in the graph. We have that xa and xb are
independent conditioned on xc, iff every path from a node in a to a node in b intercept a node
in c.

GMRFs are a particular case of MRF suitable for describing multivariate Gaussian dis-
tributions. In this case, we just have singleton potential functions (describing a prior belief)
and pairwise potential functions (describing the relationship between two different variables).
The full joint distribution can be written as

p(x) =
1
Z

n∏
i=1

φi(xi)
n∏

j=i+1

φi,j(xi, xj). (8.1)

Here φi(xi) represents the prior belief about the variable xi and φi,j(xi, xj) represents the
stochastic constraint between the variables xi and xj .

If we consider the canonical parametrization of the Gaussian, we can express each pair-
wise potential as

φi,j(xi,xj) = exp

{
c + ηTijxij −

1
2
xTijΩijxij

}
, (8.2)

where

xij ,

[
xi
xj

]
(8.3)

ηij ,

[
ηiij
ηjij

]
(8.4)

Ωij ,

[
Ω[ii]
ij Ω[ij]

ij

Ω[ji]
ij Ω[jj]

ij

]
(8.5)

Here, Ω and η are respectively the information matrix and the information vector of a mea-
surement between two nodes. The singleton potentials represents the prior information about
a node and are expressed as

φi(xi) = exp

{
c + ηTi xi − 1

2
xTi Ωixi

}
, (8.6)
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Figure 8.1: Message flow of BP on a simple graph at time t for node 1. In the left image

node 1 computes its marginal from the messages sent by its neighbors. In the right image,

node 1 calculates the new messages and send them . The messages are computed according

to Equation 8.9 and Equation 8.10.

8.2.1 Inference
An important inference problem for a graphical model is computing the marginals pi(xi),
obtained by integrating p(x) over all variables except xi, for each node i. This problem can
be solved very efficiently in graphs that are trees by a form of variable elimination, known as
belief propagation, which also provides an approximate method for general graphs.

The goal of belief propagation is to compute the marginal distribution over a graphical
model by means of local message passing. This algorithm has been introduced by Pearl [Pearl
& Russel, 2000] for inference on Bayesian Network. If the graphical model does not contain
loops, this local passing scheme is guaranteed to give the exact solution for the marginals.
Loopy belief propagation is an approximated algorithm, which uses the same equation of
belief Propagation, but in a graph with cycles. As discussed by Weiss and Freeman [Weiss
& Freeman, 2001] and Malioutov et al. [Malioutov, Johnson, & Willsky, 2006], loopy be-
lief propagation on general graphs computes correct marginal means and generally incorrect
covariances.

Belief propagation works by iteratively computing local messages and beliefs for every
node in the graph, starting with constant messages. The propagation of the messages is
repeated until a fixed point is reached. It can be shown that in the context of trees only two
iterations are needed: from leafs to root and vice versa. Using the superscript (t) for denoting
the current iteration, the belief parameters (denoted by m(t) and M(t)) are given by

m(t)
i = ηi +

∑
j∈Ni

m(t−1)
ji (8.7)

M(t)
i = Ωi +

∑
j∈Ni

M(t−1)
ji , (8.8)

where ηi and Ωi are the parameters of the prior belief (the singleton potential functions), Ni
is the neighboring set of node i, and the messages from node i to node j are defined as

m(t)
ij = ηjij −Ω[ji]

ij

(
Ω[ii]
ij + M(t)

i −M(t−1)
ji

)−1 (
ηiij + m(t)

i −m(t−1)
ji

)
(8.9)

M(t)
ij = Ω[jj]

ij −Ω[ji]
ij

(
Ω[ii]
ij + M(t)

i −M(t−1)
ji

)−1

Ω[ij]
ij (8.10)
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using the definition in Equation 8.4 and Equation 8.5. See Figure 8.1 for an example of
message flow.

Loopy Belief Propagation

When loopy belief propagation is applied, the marginal covariances can be either overconfi-
dent or conservative. However, Weiss and Freeman [Weiss & Freeman, 2001] showed that
they are always overconfident for GMRFs with pairwise cliques, which is the case of SLAM.
These estimates often result in a poor approximation of the true marginals, which cannot be
used for data association, since this results in valid associations being rejected.

A more information theoretic analysis can be derived by considering how the marginal
beliefs of every node are computed. With respect to Equation 8.8, the marginal belief are
computed by summing up all the incoming messages from the neighboring nodes. If we
consider every message as an observation of the node from its neighbor, we end up with the
measurement update of the Information Filter. However, this integration is correct only if the
two observations are independent, which is not the case of graphs with loops.

Belief Propagation over a Spanning Tree

A different approach is to approximate the full graph model by its spanning tree. Since
the tree is obtained by eliminating edges (and therefore constraints) from the GMRF and
inference on the tree is exact, it is possible to obtain conservative estimate of the true marginal
covariances. However, the result of this approximation strongly depends on the property of
the tree used. The best results are obtained when using a minimal spanning tree. Moreover,
inference on the spanning tree do not consider the loopy structure at all, resulting in too
conservative estimates.

8.3 SLAM as a Gaussian Markov Random Field
In this section we describe how the SLAM problem can be expressed in the Gaussian random
Markov field (GMRF) framework. This formulation has been first introduced by Ranganathan
et al. [Ranganathan, Kaess, & Dellaert, 2007], where they considered the full SLAM problem
(also known as Smoothing and Mapping).

8.3.1 FullSLAM Graphical Model

In the formulation of [Ranganathan, Kaess, & Dellaert, 2007], they model the distribution
over the whole robot trajectory, X , {xi : i = 0, . . . ,M}, and the landmark locations,
L , {lj : j = 1, . . . , N}, given the landmark measurements, Z , {zk : k = 1, . . . ,K} ,
and the odometry U , {ui : i = 1, . . . ,M}. The posterior can be factorized as

P (X,L|Z,U) ∝ P (Z,U |X,L)P (X,L) (8.11)

∝ P (x0)
M∏
i=1

P (xi|xi−1, ui)
K∏
k=1

P (zk|xik , ljk) (8.12)
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where P (xi|xi−1, ui) represents the motion model and P (zk|xik , ljk) is the measurement
model, assuming known correspondences (ik, jk). The motion model is given as xi = xi−1⊕
ui +ωi, where ωi is a zero-mean Gaussian noise with covariance matrix Qi, ωi ∼ N (0, Qi).
Similarly, the measurement model is zk = ljk 	 xik + vk, where vk is a normally distributed
zero-mean noise with covariance matrix Rk, vk ∼ N (0, Rk).

Considering the canonical parametrization of the Gaussian, we can express each pairwise
potential of the GMRF as either a motion or a measurement model. In the case of an odometry
link, we have

φi,j(xi,xj) = exp

{
c + ηTijxij −

1
2
xTijΩijxij

}
(8.13)

xij ,

[
xi
xj

]
(8.14)

ηij ,

[
ηiij
ηjij

]
=

[
Fij
−I

]
Q−1aij (8.15)

Ωij ,

[
Ω[ii]
ij Ω[ij]

ij

Ω[ji]
ij Ω[jj]

ij

]
=

[
Fij
−I

]
Q−1

[
Fij
−I

]T
. (8.16)

where Fij is the Jacobian of the function ⊕ w.r.t. xi and aij = xj − xi ⊕ uj .
As for the measurement link they are

φi,j(xi, lj) = exp

{
c + ηTijxij −

1
2
xTijΩijxij

}
(8.17)

xij ,

[
xi
lj

]
(8.18)

ηij ,

[
ηiij
ηjij

]
=

[
Hij

Jij

]
R−1cij (8.19)

Ωij ,

[
Ω[ii]
ij Ω[ij]

ij

Ω[ji]
ij Ω[jj]

ij

]
=

[
Hij

Jij

]
R−1

[
Hij

Jij

]T
. (8.20)

again, Hij and Jij are respectively the Jacobians of the function 	 w.r.t. xi and lj , and
cij = zk − ljk 	 xik .

8.3.2 Delayed State SLAM Graphical Model
An alternative formulation of the SLAM problem is to use a delayed-state representation
rather than a feature based one [Eustice, Singh, & Leonard, 2005]. Delayed-state repre-
sentations do not explicitly model features in the environment. Instead, the state vector is
composed only by a sequence of poses. In this representation, raw data are registered to pro-
vide virtual observations of pose displacement. These virtual observations arise, for instance,
by matching pairwise laser range data or camera images.

When using this representation, the information matrix of the corresponding multivariate
Gaussian is exactly sparse, as it has been pointed out by Eustice et al. [Eustice, Singh, &
Leonard, 2005]. This is the natural representation to express constraints between robot poses,
being them either local (from a scan matcher) or global (from loop closing). Considering
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a pair of poses, i and j, their displacement can be expressed by the following non linear
stochastic function

δij = xj 	 xi + ω. (8.21)

Here δij is the virtual observation made from the pose i about the pose j, 	 is the standard
motion composition operator and ω is a zero-mean Gaussian variable with covariance matrix
R, representing the uncertainty of the measurement. In the following, we consider the lin-
earized version, being Hij and Jij respectively the Jacobians of the function 	 w.r.t. xi and
xj .

Translating a SLAM problem formulated according to the delayed-state framework into
a GMRF is quite straightforward. Since the structure of the graph between the two models is
preserved, all we need is to define the nature of the potential functions, such that the resulting
joint probability distribution is unchanged.

If we consider the canonical parametrization of the Gaussian, we can express each pair-
wise potential as

φi,j(xi,xj) = exp

{
c + ηTijxij −

1
2
xTijΩijxij

}
, (8.22)

where

xij ,

[
xi
xj

]
(8.23)

ηij ,

[
ηiij
ηjij

]
=

[
HT
ij

JTij

]
R−1eij (8.24)

Ωij ,

[
Ω[ii]
ij Ω[ij]

ij

Ω[ji]
ij Ω[jj]

ij

]
=

[
HT
ij

JTij

]
R−1

[
HT
ij

JTij

]T
. (8.25)

eij = δij − xj 	 xi +Hijxi + Jijxi (8.26)

Here, Ω and η are respectively the information matrix and the information vector of a mea-
surement between two nodes. The singleton potentials are generally set to the unity except
for the first pose, which is fixed at the origin.

8.4 Approximate Covariance Computation
As stated in Subsection 8.2.1, loopy belief propagation on general graphs computes correct
marginal means and generally incorrect covariances. In the case of SLAM, it has been proved
that the algorithm provides overconfident estimates, which cause data association to fail.

In this section, we introduce an approach for computing the marginal covariances on a
loopy graph. Our algorithm is able to obtain conservative estimates while considering the
loopy structure of the problem. We show that our approach is able to fuse information arising
from loops by means of exact inference on a spanning tree. Our results are supported by an
extensive set of experiments.

Before describing our algorithm, we introduce an information fusion framework for deal-
ing with unknown correlations between different estimates. This framework has been intro-
duced by Uhlman and Julier under the name of Covariance Intersection [Julier & Uhlmann,
1997].
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Figure 8.2: The shape of the CI update. The thick outer ellipses represent the covariances of

A and B. The dashed ellipses represent resulting covariances of C by using different values

of ω.

8.4.1 Covariance Intersection

Covariance Intersection is a fusion rule for combining two different estimates when the corre-
lations between them are unknown. Suppose we have two consistent estimates 〈µ1,Σ1〉 and
〈µ2,Σ2〉 for the same Gaussian random variable, expressed in terms of mean and covariance
matrix. Furthermore suppose the cross correlation between the two covariance matrices Σ1

and Σ1 to be unknown.

Covariance Intersection combines the two estimates, in order to obtain a new one
〈
µ̂, Σ̂

〉
,

according to the following equations

Σ̂ = (ωΣ−1
1 + (1− ω)Σ−1

2 )−1 (8.27)

µ̂ = Σ̂(ωΣ−1
1 µ1 + (1− ω)Σ−1

2 µ2). (8.28)

If ω ∈ [0, 1], the resulting estimate has been proved to be consistent. Moreover, it can
be shown that the approach is optimal in the case in which the cross correlations are un-
known [Julier & Uhlmann, 1997]. As pointed out by Julier and Uhlmann [Julier & Uhlmann,
1997], the intuition behind this update rule comes from its geometric interpretation. Let us
consider the plot in Figure 8.2. This figure shows the covariance ellipses for the two esti-
mates (thick outer ellipses) and the resulting update with different values for ω (dashed inner
ellipses). The optimal estimate, the one considering the cross correlations, is known to lies
within the intersection region of the estimate ellipses, of A and B. As can be seen from the
figure, the CI ellipses always circumscribe this region, but do not lie within it. This results
in having a covariance matrix bigger (in a matrix sense) than the exact one, for any value of
the cross correlation terms. Moreover, the CI ellipses intersect the corners of the intersection
region, showing no other robust estimate can achieve a tighter result



134 8. Probabilistic Map Optimization

Figure 8.3: An example loopy graph (left) and its spanning tree (right). The off-tree edges

are the dashed edges in the graph.

8.4.2 Loopy Intersection Propagation

A natural solution to obtain better covariances is to combine the conservativeness of inference
on a spanning tree with the information coming from the off-tree edges. In this section,
we will describe how this can be achieved using the Covariance Intersection framework.
Figure 8.3 shows an example graph. A spanning tree of this graph is depicted on the right
part of the image. The off-tree edges (the ones which are not present in the spanning tree) are
depicted as dashed edges in the graph.

Our goal is to obtain a tree approximation from the original graph. This tree takes into
account the off-tree information. This can be expressed analytically by considering some
operations on the joint Information Matrix of the GMRF.

Let Ω be this joint Information Matrix and Ω̂ its tree approximation. For any tree-
structured Information Matrix there exist a symmetric matrix K such that

Ω̂ = Ω−K. (8.29)

The matrix K acts to remove edges from the graph, therefore it is referred to as cutting
matrix. Some elements of the cutting matrix, as the off-diagonal elements corresponding to
eliminated edges, are uniquely defined by the choice of the tree. However, other entries, as
the block diagonal elements, are not constrained. We will focus our attention on a restricted
class of cutting matrices, called regular cutting matrices. For a regular cutting matrix K
corresponding to an embedded tree, all off-diagonal entries not corresponding to cut edges
must be zero. The block diagonal entries for nodes from which no edge is cut must be zero.
The off-diagonal entries corresponding to cut edges must be equal to the original matrix ones.

In order to derive a tree approximation of the GMRF, we have to analyze the structure of
the corresponding cutting matrix. For the sake of simplicity, we will restrict the analysis on
cutting a single edge, being the extension to multiple edges straightforward. 1

When using the naive spanning tree approximation, we can express the matrix cutting an

1The overall cutting matrix can be decomposed into the sum of single edge ones, while preserving its regularity

condition.
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edge between the node i and the node j as

Kij =


0 0 0 0 0
0 Ω[ii]

ij 0 Ω[ij]
ij 0

0 0 0 0 0
0 Ω[ji]

ij 0 Ω[jj]
ij 0

0 0 0 0 0

 . (8.30)

Cutting this edge results in subtracting the information of an edge from the overall informa-
tion matrix of the system.

To consider the off-tree information while keeping the regularity condition of the cutting
matrix, we are forced to modify its block diagonal entries. Let P[i]

ij and P[j]
ij be the informa-

tion about node i and j arising from the off-tree edge. The modified cutting matrix will be of
the following form

Kij =


0 0 0 0 0
0 Ω[ii]

ij −P[i]
ij 0 Ω[ij]

ij 0
0 0 0 0 0
0 Ω[ji]

ij 0 Ω[jj]
ij −P[j]

ij 0
0 0 0 0 0

 . (8.31)

Note that subtracting information from the cutting matrix results in adding this information
to the tree approximation Ω̂ according to Equation 8.29.

In the a graphical model perspective, those two pieces of information, P[i]
ij and P[j]

ij , can
be seen as a prior knowledge about the nodes, acting as singleton potential functions. In
other words, we approximate the GMRF with its spanning tree by considering the off-edge
information as prior knowledge in this approximation.

8.4.3 Algorithm

Our approach transforms the graph into a tree augmented with prior information. First it
computes a spanning tree on the GMRF. Second, it performs BP on the computed tree, to
obtain open loop estimates for the information matrices {Mi} of all nodes. Third, for each
edge 〈i, j〉 in the graph which does not appear in the tree it computes the priors P[i]

ij and P[j]
ij

for the nodes i and j. These priors aim to recover part of the information which has been lost
when removing the edge. P[i]

ij and P[j]
ij are computed considering the mutual information in-

troduced by the cut edge based on the estimates Mi and Mj computed by the first application
of BP. Let E[i]

ij and E[j]
ij be these estimates. They can be computed as follows.

E[i]
ij = Ω[ii]

ij −Ω[ij]
ij (Mj + Ω[jj]

ij )−1Ω[ji]
ij

E[j]
ij = Ω[jj]

ij −Ω[ji]
ij (Mi + Ω[ii]

ij )−1Ω[ij]
ij . (8.32)

Intuitively, E[i]
ij is obtained by propagating the edge information from the BP estimate Mj of

the node j along the cut edge. E[j]
ij is computed in a symmetric way.
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For each node in a cut edge, we have therefore two estimates: (E[i]
ij ,Mi) and (E[j]

ij ,Mj).
We can compute improved estimates by applying covariance intersection, for each off-tree
edge, as:

M̂i = ωiMi + (1− ωi)E[i]
ij

M̂j = ωjMj + (1− ωj)E[j]
ij . (8.33)

In our implementation, we choose ωi and ωj so that the determinants of M̂i and M̂j are
minimal. In other words, we select the smaller covariance which can be obtained by CI.

We compute the priors P[k]
ij as the difference between the improved estimate and the BP

one as
P[k]
ij = M̂k −Mk. (8.34)

Here the P[k]
ij represent the desired priors coming from the suppressed edge 〈i, j〉.

The final step consists in performing a final inference using BP on the spanning tree in
which we injected these terms. It is worth noticing, that our algorithm has the best per-
formance on the incremental spanning tree defined by Grisetti et al. [Grisetti et al., 2007a]
because the off-edge information is used immediately. Moreover, this tree is as easily main-
tained as any minimum one.

Note that the prior for a node i is computed by considering the contribution of all the
cutted edges connected to node i. Whereas suppressing a single edge leads to a conserva-
tive estimate, suppressing multiple edges may lead to overconfident estimates. As shown in
Subsection 8.5.1, the level of overconfidence increases with the connectivity of the network.

The data flow of the resulting algorithm, called Loopy Intersection Propagation, is ex-
plained in Algorithm 13, while

Algorithm 13: Loopy Intersection Propagation
Input: The SLAM GMRF: G = (V, E) and Ψ = {ψi(), ψij()|i, j ∈ V}
Output: The approximated marginal covariances M̂i, i ∈ V
Compute the spanning tree of the graph GT = (V, ET );1

Perform Belief Propagation on the spanning tree;2

forall off-tree edges e ∈ E − ET do3

Compute the prior beliefs according to Equation 8.34;4

end5

Update the tree with the prior beliefs;6

Perform Belief Propagation on the resulting model;7

8.5 Experiments
In this section we evaluate the performance of loopy belief propagation (LBP), for the mean,
and loopy intersection propagation (LIP), for the covariance, within the probabilistic map
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Figure 8.4: Iterations of LBP on a random generated graph with 1000 nodes. The top left

figure shows the perturbed graph.

optimization framework. Since LBP has already been proved to converge in the GMRF, in
this section we focus on demonstrate that the use of LBP is equivalent to a non-linear op-
timization algorithm. As for LIP, we will compare the estimated covariance matrices with
respect to standard belief propagation and loopy belief propagation. All those algorithms
have a complexity linear in the number of edges of the graph. Therefore, we are only inter-
ested in measuring the quality of the approximation. Given a node, we want to compare the
approximate marginal covariance Σ̂ with the exact one Σ2. This can be done by considering
the norm of the matrix difference

‖Σ̂−Σ‖F , (8.35)

where ‖ · ‖F is the Frobenius norm.
Furthermore, given a conservative and an overconfident estimate, we prefer the conser-

vative one, since it allows to better deal with data association. An estimate is conservative
if it is bigger than the exact one, thus being Σ̂ − Σ ≥ 0. Measuring the conservativeness
means to measure how far the matrix Σ̂ −Σ is to be positive definite. This can be done by
considering the value of the smallest eigenvalue: it is negative in the case of overconfidence
and positive in the case of conservativeness.

We performed experiments on real world datasets and on simulated ones. Using simulated
data we obtained quantitative results both for the mean and the covariance computation. With

2The exact covariances are computed by inverting the information matrix of the GMRF
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Figure 8.5: Average and standard deviation of the relative error between nodes in random

generated graphs of 500, 700 and 1000 nodes, with precision 1000. The plot shows the

variation of this error during several iterations

real dataset, we only obtain qualitative results for the mean, as no groundtruth is available,
while keeping the qualitative ones for the covariance.

8.5.1 Statistical Experiments

We performed statistical experiments on simulated networks of different sizes. The networks
were randomly generated by simulating a random walk in the SO(3) space. Loops were
simulated by considering the Euclidean distance between nodes.

The mean computation was compared to the ground truth with respect to both the number
of nodes and the system noise. As for the number of nodes, the experiments were performed
using networks with size from 50 to 1000, adding 50 nodes each time. As for the noise level,
we considered spherical noise with precision values from 50, to 1000, with a step of 50. For
both experiments, we iterated the linearization and LBP step until convergences. We then
measured the average relative error between each pair of nodes of each iteration. The plots in
Figure 8.5 and Figure 8.6 shows the average value and 95% confidence intervals for some of
those parameters values.

Figure 8.4 shows the behavior of LBP with respect to the graph with 1000 nodes. The
picture on the top left shows the perturbed graph, while the remaining ones show the corrected
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Figure 8.6: Average and standard deviation of the relative error between nodes in random

generated graphs of 250 nodes, with precision 50, 100 and 200. The plot shows the variation

of this error during several iterations

graph after 1, 2 and 3 iterations. The red links represent the robot path (local constraints),
while the blue ones represent data association (global constraints).

We then compared LIP with LBP and BP on a spanning tree. We used networks with 500,
1, 000, 3, 000, and 5, 000 nodes. The plots in Figure 8.7 and Figure 8.8 show the average
values and the 95% confidence intervals.

Figure 8.7 shows the approximation error of the three approaches, computed according
to Equation 8.35. As can be seen, our approach scales better than LBP and BP. This is due to
the increasing number of loops occurring in the network as its size grows: Whereas BP does
not use loop information, our approach does consider it in a better way than LBP.

As for the overconfidence, Figure 8.8 shows the evolution of the minimum eigenvalue
of the error matrix. BP always produces conservative estimates, while LBP produces overly
overconfident ones. Our approach lies in the middle with a small level of overconfidence.

8.5.2 Real World Data

We analyzed the behavior of our algorithm on graphs extracted from standard datasets avail-
able on radish [Howard & Roy, 2003]. We use LBP to compute the mean value of the distribu-
tion and we compared LIP with LBP and BP on a minimum spanning tree for the covariance.
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Figure 8.9: Analysis of the covariance approximation on the Intel dataset. The upper plot

shows the approximation error and the lower one shows the conservativeness analysis of the

different nodes. Note that LBP is overconfident, BP on a spanning tree is overly conservative,

and our approach (LIP) provides an intermediate result, being in general closer to the exact

estimate.

For each node of the network we measured the distance between the estimate and the exact
value of the covariance, according to Equation 8.35. In all the cases our approach provided
a better estimate than BP on the spanning tree. Furthermore it provided more conservative
estimates than LBP. Quantitative results for the Intel dataset are depicted in Figure 8.9. Qual-
itative results for the Intel and Aces datasets are shown in Figure 8.10 and Figure 8.11.

8.6 Connections with Previous Work

The work described in this chapter belongs to the family of ML algorithms. One of the
first approaches of this type has been proposed by Lu and Milios [Lu & Milios, 1997a].
Later, Howard et al. [Howard, Matarić, & Sukhatme, 2001b] used Gauss-Seidel relaxation
to localize the robot and build a map. Duckett et al. [Duckett, Marsland, & Shapiro, 2002]
proposed Gauss-Seidel relaxation to minimize the error in the network of constraints. Their
approach has been subsequently extended by Frese et al. [Frese, Larsson, & Duckett, 2005]
by the introduction of the multi-level relaxation (MLR) framework, which applies relaxation
on different resolutions.

Olson et al. [Olson, Leonard, & Teller, 2006] addressed the problem by using gradi-
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ent descent on a network described in a form which allows for efficient analytical updates.
Graphical SLAM [Folkesson & Christensen, 2004] builds a graphical model of the smooth-
ing problem. It optimizes the graph by defining an energy function for each node and then
minimizing this energy.

Whereas these methods mainly focus on estimating the most likely configuration of the
map, they leave open how to estimate the uncertainty of the solution. To the best of our
knowledge, the only approach which computes both the ML configuration of the nodes ant
their marginal distribution has been proposed by Ranganathan et al. [Ranganathan, Kaess,
& Dellaert, 2007]. They model the smoothing problem as a Gaussian Markov random field
(GMRF) and use loopy belief propagation on this model. An exact algorithm for those co-
variances can be found in the work of Kaess et. al [Kaess, Ranganathan, & Dellaert, 2007].
Their algorithm, however, is guaranteed to be efficient only in the case of band-diagonal ma-
trices, and can be more expensive for general sparsity patterns. Moreover, LIP equations can
be integrated in the LBP loop for the mean computation.

8.7 Conclusions
In this chapter we presented a probabilistic framework for map optimization. We showed how
the constraints arising from incremental mapping (local constraints) and loop closing (global
constraints) can be fused together in a unified model. The model we choose is the Gaussian
Markov Field. We showed that this model naturally represent a delayed state formulation of
SLAM and that inference on it can be effectively used as a non linear optimization routine.

Moreover, we presented a novel algorithm for marginal covariance computation in the
graph representation of SLAM. Our approach has been validated by an extensive set of ex-
periments. In general, the estimated covariances are conservative and when they are overcon-
fident, their overconfidence level is close to 0. Furthermore, our approach provides estimates
closer to the exact ones with respect to other techniques of the same family like loopy belief
propagation or belief propagation on a spanning tree.
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Figure 8.10: Mean and marginal covariances comparison on the Intel Lab dataset: the exact

covariances, computed by inverting the full matrix, are depicted in red (solid line), the ap-

proximated ones are in green (dashed line). Results obtained by a) Loopy Belief Propagation.

b) Belief Propagation on a Minimum Spanning Tree. c)Loopy Intersection Propagation. d)

The grid map of the environment. Notice how the distribution mean reflects the environment

topology.
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a)
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Figure 8.11: Mean and marginal covariances comparison on the Aces dataset: the exact

covariances, computed by inverting the full matrix, are depicted in red (solid line), the ap-

proximated ones are in green (dashed line). Results obtained by a) Loopy Belief Propagation.

b) Belief Propagation on a Minimum Spanning Tree. c)Loopy Intersection Propagation. d)

The grid map of the environment. Notice how the distribution mean reflects the environment

topology.



Chapter 9

Discussion

9.1 Conclusions

A key problem in mobile robotics is the knowledge of the environment and the robot position
within it. The capability of learning maps is a precondition for every truly autonomous mo-
bile vehicle. This task, is strictly connected with the task of localizing the robot within the
environment. The connection lies in the fact that for a good map estimate it is needed the po-
sition of the robot and viceversa. To this end, the problem of robot localization and mapping
in unknown environment, is one of the most studied problems in mobile robots research.

Up to now, SLAM has been addressed by two main solutions: filtering and optimization.
However, not always the structure of the problem is taken into account. Optimization methods
take some numerical algorithm “off the shelf” and apply it directly to the problem. Filtering
approaches often use a Bayesian filter as a “black box”. Lately, some ideas about decoupling
the problem into smaller ones are emerging. However, those ideas rely on heuristics, based
on empirical considerations.

This thesis focuses on the development and improvement of Simultaneous Localization
and Mapping algorithms. In particular, we are interested in reliable and effective techniques
for unstructured large scale environments. The purpose of our research is to devise contextual
models of the SLAM process, that take into account different situations.

We began the work by showing a exhaustive taxonomy of the diverse solutions for the
SLAM problem. We described how the environment can be described, showing the pros and
cons of the different representations: landmark, grid, topological and hybrid maps. We then
explain the diverse class of algorithms. We started describing techniques about incremental
mapping, such as scan matching and visual odometry, followed by global optimization tech-
niques. We then explained the different filtering algorithms for SLAM: the Kalman filter, the
information filter and the particle filter. Finally, some techniques for topological and hybrid
mapping were described.

In Chapter 5 we presented an introspection analysis that allows efficient optimizations
for Rao-Blackwellized SLAM on grid maps. We are able to update the complex posterior
with substantially less resources by performing the computations only for a set of representa-
tives instead of for all potential hypotheses. We proposed an alternative way for representing
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a distribution over grid maps which needs only a fraction of the memory resources used by
previous approaches. Moreover, we proposed an efficient way for updating such a representa-
tion.The key idea is based on an analysis of the mapping process which allows us to perform
filter updates conditioned to the state of the mapping system: localization, mapping or loop
closing . Using this insight, we are able to obtain clusters of particles that share a compact
map representation as well as an informed proposal distribution to sample the next genera-
tion of particles. With our optimizations, we are able to maintain between one and two orders
of magnitude more samples and at the same time require less memory and computational
resources compared to other state-of-the-art Rao-Blackwellized mapping techniques.

We then extended our introspective analysis from a filtering perspective to the whole
problem. This latter analysis brought us to a decomposition of the SLAM process into three
main aspects

• Incremental Mapping

• Loop Closure

• Map Optimization

In Part II we address those three main problems. The main idea of this decomposition is
that we have two main source of information in the mapping process. At first, we have
observations about the robot incremental motion. This information is obtained usually with
odometry sensors and corrected with techniques such as scan matching. We call this kind of
information local constraints. The reason of the name is easily explained: they link together
observations that are close in time and generate maps that are locally consistent. A second
source of information comes from the data association. This kind of information is obtained
mainly by using statistical gating and exteroceptive sensors. We call this kind of information
global constraints, and they link together information far away in time, but that refers to the
same spatial position. The term global is used as those constraints are needed to ensure a
global consistent map.

The incremental mapping problem has been addressed in Chapter 6 We described how
to obtain an incremental estimation of the robot motion both in static and dynamic environ-
ments. As for static environment, we revise ICP, a well known technique for scan matching.
We showed how this technique can be used to solve the scan matching, a non linear optimiza-
tion problem. We then showed how to compute a linear approximation of the optimization
algorithm, describing state of the art techniques. As for dynamic environments, we intro-
duced CRF-Clustering, a novel technique for clustering dependent data into homogeneous
partitions and showed its capability to detect and predict the motion of moving objects from
range data. Previous techniques were based on observability and visibility heuristics, and on
keeping track of the consistency of the free space. While they have nice results on typical
situations, they dramatically fall when their assumptions are violated. Moreover, we showed
that typical clustering algorithm such as K-means fail in clustering very noisy and correlated
data, as it does not consider their spatial dependency. On the other hand, our technique ex-
plicitly reasons about the underlying motion of the objects and their spatial properties, thus
being more effective for the problem.

The problem of detecting and estimating globally consistent constraints has been ad-
dressed in Chapter 7. This aspect is the most sensitive one of the SLAM process. It is not
always possible to rely on metrical information for the gating, as the robot can be in gross er-
ror. We think that some ad-hoc techniques for this problem should be used and we presented
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an algorithm, called Frozen-Time Smoother, which can efficiently solve the loop closing
problem when it is formulated as a smoothing problem, and a precise incremental estimate
of the robot motion is available. Using this estimate, the generalized Hough transform can be
slightly modified to compute the distribution of the pose at a certain “freezing time”, given a
sensor reading collected much later in time. We compared the FTS with the closest technique
available in the literature. Under the same assumptions of the FTS, we modified the Monte
Carlo filter to obtain an approximated solution to the smoothing problem. The experiments
suggest that a naive implementation of FTS is more efficient than an extremely optimized
state-of-the-art Monte Carlo filter working under the same assumptions.

Once the local constraints from the incremental estimate and the global ones from the
loop closing algorithm have been provided, they have to be fused together in order to obtain
a consistent map estimate. This is explained in Chapter 8, where we describe a probabilistic
framework for map optimization. We showed how the constraints arising from incremental
mapping (local constraints) and loop closing (global constraints) can be fused together in a
unified model. The model we choose is the Gaussian Markov Field. We showed that this
model naturally represent a delayed state formulation of SLAM and that inference on it can
be effectively used as a non linear optimization routine. Moreover, we presented a novel
algorithm for marginal covariance computation in the graph representation of SLAM. Our
approach provides estimates, closer to the exact ones, with respect to other techniques of the
same family like loopy belief propagation or classic belief propagation on a spanning tree.

All the algorithms presented in this thesis have been implemented and extensively tested,
both on simulated and real data.

9.2 Future Works

Despite the encouraging results presented in this thesis, there are different aspects that could
be improved. The main issues are pointed out in the following subsections.

9.2.1 3D Environments

The current state of the art in SLAM has shown that is possible to build accurate maps of large
scale planar environments. However the problem of mapping 3D environments is mostly
open. There are several difficulties that have to be considered when moving from a planar
environment to a 3D space. First, the robot pose space grows from SO(2) to SO(3), thus
passing from three to six variables. Second, an increased amount of memory is required for
storing a 3D map a rather than a 2D map. Finally, a huge amount of data has to be processed
every time.

As future work, we would like to extend the results of this thesis about the problem de-
composition to a full three dimensional scenario. In order to do so, we need to develop fast al-
gorithms for scan matching and data association, as well as compact map representations. We
think that both the delayed state representation and the “shared” map described in Chapter 5
can be an efficient data structure for this purposes. Finally, we want to explore good lineariza-
tion and inference algorithms for the probabilistic map optimization framework, adapted for
the 3D case.
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9.2.2 Multi Hypothesis Tracker for Data Association
The ideas presented in Part II do not keep track of different topological hypothesis of the
map. The current system works on the best hypothesis given by the loop closing algorithm,
acting like it was the only possibility. This is also the common view of Kalman filtering tech-
niques, where only the maximum likelihood hypothesis is chosen with the data association.
On the other hand, works on topological mapping showed that is possible to track different
topologies of the environment, obtaining an a posteriori estimate of the most correct one.

As a future work, we would like to extend the introspective decomposition with a multi
hypothesis tracker on the space of topologies. This can be done, by simply consider the
different data association options from the loop closing algorithm. Some ideas on how to
estimate heterogeneous features have been presented in our previous work [Tipaldi et al.,
2007] and summarized in Appendix B.

9.2.3 Simultaneous Localization, Mapping and Tracking
The motion clustering framework described in Chapter 6 was mainly developed in order to
classify points according to their source of motion. In this way, we were able to discriminate
between points arising from the environment and points arising from the moving object. In
current applications, however, there is an incoming need to also track this moving objects over
time. The problem of Simultaneous Localization and Mapping with Moving Object Tracking
(SLAMMOT) has been introduced in [Wang et al., 2007], where the authors showed that the
two problem are independent conditioned on the classification of the points.

As a future work, we would like to incorporate a tracking algorithm within our SLAM
framework. Once the different tracks have been detected and tracked, we can learn motion
patterns from them, and use this information to classify the different motion behaviors. We
think that this is an interesting problem, especially with unmanned vehicle, so that they can
predict the motion of the others vehicle in the environment and react accordingly.
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Appendix A

Conditional Random Field for
Semi-Supervised Clustering

In this appendix we will explaing how Conditional Random Fields can be used as an effective
tool for semi-supervised clustering. The model can easily incorporate any kind of constraints
(e.g. pairwise, group). The constraints are soft, whose confidence level can be learned (via
Maximum Likelihood) or given by an expert. The algorithm is an iterative one and pretty
straightforward. It can deal with generalized constraints in both the point and parameter
space.

A.1 Semi-Supervised Clustering

Semi-supervised clustering is the problem of partitioning the data points into a specified num-
ber of clusters, where the supervision is in the form of pairwise constraints. Typically,those
contraints appear in the form of must-link (points should be in the same cluster) and cannot-
link (points should be in different clusters). This kind of contraints is relatively easy to obtain
instead of having the class label, and results in improved performance when the separation
boundary of different clusters is not well defined.

Clustering problems can be categorized as generative or discriminative. In generative
clustering approaches, data come from a parametric model and the goal is to find the parame-
ters that maximize the likelihood of the data given the model. Discrimative approaches, on the
contrary, try to cluster the data in order to maximize within-cluster similarity and minimize
between-cluster similarity, based on a particular similarity metric.

Moreover, Semi-supervision can be applyied in two main form. Some researchers use
the supervision to guide the algorithm towards a partition that does not violate the con-
straints [Wagsta et al., 2001; Basu, Banerjee, & Mooney, 2002]. Others use the supervision in
order to modify the distance function between points. This new distance considers points in a
cannot-link (must-link) relation farer (closer) than points not affected by a constraint [Bilenko
& Mooney, 2003; Klein, Kamvar, & Manning, 2002; Xing et al., 2003].
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A unified probabilistic model that combines together constraint-based and distance-based
approach is presented in [Basu et al., 2006]. The approach is based on Hidden Markov Ran-
dom Fields (HMRF). The clustering objective function is derived from the joint probability
density of the observed points, the cluster parameters and the hidden labels. The approach is
based on a generative approach to clustering, where points are generated by the model and
clustering is performed by maximizing the likelihood of the data given the model.

In the next section, we provide a novel unified framework for semi-supervised learning,
which is based on a discriminative model, called Conditional Random Field (CRF). We will
explain why a discriminative approach is better suited for this kind of problems and will show
how is it possible to express more general constraints within our model.

A.2 CRF-Clustering
CRF-Clustering is a semi-supervised clustering algorithm. The approach is an unified frame-
work where constraints and distances are combined together in a single probabilistic model.
Moreover, the approach lies in between discriminative and generative clustering. More
specifically, data points are not generated by some parametric model neither we use a fixed
metric for discriminate them.

Our approach is partly generative and partly discriminative. It is discriminative, in the
sense used for classification problems: cluster assignments are modeled within a Conditional
Random Field, whose parameters are learned from labeled data. It is generative, as some fea-
ture functions of the CRF model are cluster-dependant (they return a vector whose dimension
is the number of clusters) and parametric (the parameters depend on the cluster).

A.2.1 The Model
In this section we provide a more formal description of the problem and its solution. The
clustering setting cosidered is similar to the partitional prototype based one. Data points are
partitioned into a pre-specified number of cluster, where each cluster is identified by a set a
parameters. Those parameters are used in conjunction with a distorsion function to provide a
distance measure to be minimized.

More formally, our clustering considers a set of n data points X = (x1, . . . , xn), each
xi ∈ D being a general point in the spaceD. The space is equipped with a distortion function
dθ used to compute a distance between a point and a cluster: dθ : D → R+ where θ are
the clusters’ parameters. Supervision is provided in terms of pairwise constraints between
data points. In this section we will describe how to model two kind of constraints, typical
of current semi-supervision, while in the next one we will show how to model more gen-
eral ones. The constraints considered here are must-link constraints CML = {(xi, xj)} and
cannot-link constraints CCL = {(xi, xj)}. A constraint (xi, xj) ∈ CML implies that xi and
xj are labeled to belong to the same cluster, while (xi, xj) ∈ CCL implies the two points are
labeled to belong to different clusters. Those constraints are soft, meaning that each of them
is associated with a violation cost ωij representig the strength of the constraint itself.

As for the probabilistic model, we have the following random variables:

• observations, X = {x1, . . . , xn}, representing the data points;

• hidden labels, Y = {y1, . . . , yn}, representing the labels of the data points;
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• hidden parameters, Θ = {θ1, . . . , θk}, representing the parameters of the distortion
functions.

• constratints, C = CML ∪ CCL, defining the graph structure of the CRF model.

• a graph G = (V,E) encoding the stocasthic dependences among the variables. Cliques
on this graph represent groups of correlated variables.

The graphical model is built in the following way. Each random variable yi ∈ Y is
associated with a set of neighboursNi. The neighbours are defined as the labels of the points
involved in a constraint, NC

i = {yj |(xi, yj) ∈ C}, the corresponding data point, xi, and the
cluster parameters Θ, resulting in

Ni = NC
i ∪ {xi} ∪Θ (A.1)

The resulting random field over the labels and the parameters is a Conditional Random
Field (CRF). According to the Hammersley-Clifford theorem, we have that the the joint dis-
tribution is a Gibbs distribution of the form:

P (Y,Θ|X,C) =
1
Z

exp {−(
∑

(yi,yj)∈NC
ωijφC(yi, yj) +

n∑
i=1

∑
θk∈Θ

ωkdθk(xi))} (A.2)

where Z is the partition function (normalizer), ωij is the violation cost of the constraint
(xi, xj), φC(·, ·) is the constraint potential function and dθk(·, ·) the distortion function of
cluster k. Note that ωk is a scaling parameter for the cluster function. It is usually set to 1
and shared among the clusters. However, it can also be learned from data and used to force
the data points to belong to a specified cluster (this is another form of supervision). The 1/2
normalizer avoids the double counting of the symmetric constraints.

The clustering solution is provided by maximizing the distribution in Equation A.2. Here
lies the first difference with a generative approach to clustering. In a generative approach, the
solution is provided by maximizing the data likelihood, which is

P (X|Θ) = EY [P (X,Y |Θ)] (A.3)

However, it has been shown [Basu et al., 2006] that when dealing with constraints is better to
maximize the full joint posterior

P (X,Y,Θ|C) = P (Θ)P (Y |Θ|C)P (X|Y,Θ) (A.4)

which is equivalent to jointly maximize the data likelihood and the probability of labels that
respects the constraints, while regularizing the model parameters.

The contribution of modelling the conditional distribution, instead of the joint one, is
twofold. On a first viewpoint, we can see that the conditional distribution is proportional to
the joint one, by using the Bayes rule

P (Y,Θ|C,X) =
1

P (X|C)
· P (X,Y,Θ|C) ∝ P (X,Y,Θ|C) (A.5)

In this case, maximizing the conditional ditribution is the same as maximizing the joint one.
Moreover, generative clustering assumes that data points are generated independently. While
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this assumption is often reasonable, ww think that is not the case when dealing with con-
straints. The role of constraints is to put two or more points in the same cluster, thus correlat-
ing them. Using a CRF, the independence assumption is not made, thus resulting in a better
modelling tool.

Secondly, modelling the problem with the distribution in Equation A.2, we are allowed to
express more general constraints than simple must or cannot link. How to model this type of
constraints is explained in the following section

A.2.2 Generalized Constraints

In this section we show how to model more general constraints than simle must and cannot
link ones. In current semi-supervised clustering approaches, the label distribution is modeled
independently of the data points. This distribution is intended to express the probability of
a given label configuration and the constraints can only be expressed in terms of points i
and j must or cannot be in the same cluster. When jointly modelling labels and parameters
and conditioning that distribution on the data points, we have all the possibile informations
available in the same model and we can express contraints in terms of points that satisfy this
property must or cannot be in the same cluster. We call these kind of constraints generalized
constraints and we divide them in two main categories1:

• parameter-based generalized constraints;

• point-based generalized constraints.

Parameter-Based Generalized Constraints These constraints are related to the cluster
parameters and involve knowledge in the parameters configuration (e.g. points with similar
parameters must be in the same cluster). This constraints are expressed in terms of functions
φΘ : Θ x Θ x Y x Y → R+. These functions are defined over the graph clique composed of
the two labels’ nodes and the parameters’ ones (NΘ). This is the most complex constraint,
due to the strong dependency among labels and parameters (to learn the parameter we need
the labels and viceversa) and their different nature (discrete vs. continue)

Point-Based Generalized Constraints These constraints are related to the data points and
involve knowledge in some points’ subspace (e.g. points wich are similar w.r.t some distance
func tion must be in the same cluster). This constraints are expressed in terms of functions
φX : X xX x x Y x Y → R+. These functions are defined over the graph clique composed
of the two labels’ nodes and the corresponding data points’ ones (NX ). It is worth to notice,
here, that while the function is defined over a 4D domain, it is, in reality, only a function over
the two labels. The data points are given and related to the label index, so they can be treated
as constants.

1notice that these are not the only type of generalized constraints. We can, for istance, use group contraints,

where we say that a group of point must be in the same cluster. More generally, we can use as a constraint any

positive definite function over any possible clique of the graph
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CRF-Clustering with Generalized Constraints When using the generalized constraints
the full posterior described in Equation A.2 becomes

P (Y,Θ|X,C) =
1
Z2

exp {−(ΦC + ΦΘ + ΦX + ΦD)} (A.6)

where

ΦC =
∑

(yi,yj)∈NC
ωijφC(yi, yj) (A.7)

ΦΘ =
∑

(yi,yj ,θk,θl)∈NΘ

ωijkφΘ(yi, yj , θk, θl) (A.8)

ΦX =
∑

(yi,yj ,xi,xj)∈NX
ωxijφX(yi, yj , xi, xj) (A.9)

ΦD =
n∑
i=1

∑
θk∈Θ

ωkdθk(xi) (A.10)

Unfortunately, the full use of generalized constraints increase the complexity of the model.
Theoretically, we should add a link in the graphical model for every nodes, making the em-
bedded graph fully connected. However, efficiency can be brought back by using a delaunay
triangolation to form the links.

A.2.3 Inference
In this section we will explain how to perform inference on the CRF-clustering model. The
main problem, here, is that this model is a mixed continue-discrete one. Inference in such
a model is known to be complex, and cannot be always performed in closed form. More-
over, even iterative algorithms like belief propagation needs to be adapted as messages are of
different dimension and nature.

Under the assumptions that: 1)the parameters of the distortion functions can be obtained
easily (e.g. with a least square technique) when the labels are given, 2) the parameter gener-
alized constraints are in a particular form, it is possible to obtain a simple iterative algorithm
that find an optimal solution. The algorithm is shown in Algorithm 14

Algorithm 14: CRF-Clustering

for i = 1 to maxiteration do1

perform MAP inference on the “label” CRF with the max-sum algorithm2

perform ML estimation on the “parameter” CRF3

end4

Where the “label” CRF is the original CRF conditioned on the parameters. And the “la-
bel” CRF is the original one conditioned on the labels. As for the “label” one, the parameters
are treated as constant with the value of the previous iteration. The resulting model is only a
discrete one and the max-sum algorithm can be used. Once we obtained the labels, we can
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perform standard ML estimation on the parameters, as the “parameter” CRF is a. discon-
nected graph with a separate clique for every cluster. However, particular care has to be taken
wen dealing with the parameter generalized constraints. While there is no problem in having
them in the “label” CRF, as the MAP inference algorithm can deal with them, some problems
arise in the “parameter” one. Simply put, in order to have this algorithm work we restrict the
parameter generalized constraints to have the form

φΘ(yi, yj , θk, θl) = d(θk, θl)δ(yi, yj) (A.11)

where d(θk, θl) is any distance function which is always positive and equals to 0 iff θk = θl
and δ(yi, yj) is the Kronecker delta function. Under this assumption, this term disappear
from the objective function in the “parameter” CRF. The proof is quite simple. Once we have
the label fixed, we only have two cases: 1) the points are assigned to the same cluster; 2)
the points are assigned to two different clusters. In case 1), we have that the term d(θk, θl)
is equal to 0, as the two points belong to the same cluster and θk = θl. In case 2), we have
that the term δ(yi, yj) is equal to 0, as the points belong to different clusters. Finally, the
algorithm converges, as it minimize the objective function at every step.



Appendix B

Multi Hypothesis Data Association

In this appendix we present a technique to estimate the state of heterogeneous features from
inaccurate sensors. The proposed approach exploits the reliability of the feature extraction
process in the sensor model and uses a Rao-Blackwellized particle filter to address the data
association problem.

B.1 Problem formulation
Let F = {f1, . . . , fK} be a set of K features which are present in the environment, where
K may be either known or not (see Section B.3 for further details on this). Each feature
has associated a state xkt , which can evolve during time. The nature of the state is strictly
connected with the class of the corresponding feature. Therefore, such states neither belongs
to the same space nor have the same dimension. The state evolution of each feature is modeled
by a stochastic process ruled by the distribution:

p(xkt+1|xkt ) (B.1)

The features persist over time. The robot is able to observe a subset of the features at time.
Those features are detected by a complex algorithm, and a reliability measure about the de-
tection is provided1. The number of features is modelled as a Poisson distribution, with
parameter λnV , where V is the dimension of the explored space and λn is the scattered rate
of the features. There are also false alarms and the number of false alarms also follows a
Poisson distribution with parameter λf , where λf is the false alarm rate.

Without loss of generality, we restrict ourselves to consider just one observation for time
step. Let zt = 〈yt, Rel(yt)〉 the reading at time t. This reading is composed by two parts:
yt is an observation of the feature2; Rel(yt) is a vector of numerical values that encodes
the reliability of the detection process for each feature. For the sake of clarity, we use the
notation Relk(yt), k = 1, . . . ,K to denote the probability of the readings being generated

1The reliability is intended as a measure on how likely the feature is detected and associated to an already existing

one
2More precisely, yt is a raw data, which is transformed into a feature observation according to that feature’s class
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by the k-th feature, Rel0(yjt ) to denote the probability of the reading being a false alarm and
RelK+1(yjt ) to denote the probability of the readings being generated by a new feature. It is
worth noting, that Rel0(yjt ) and RelK+1(yjt ) do not depend on the detection process, but are
instead modelled by the Poisson distributions defined above.

The observations yt are generated from{
p(Ψk(yt)|xkt ) if the observation is from xkt
ut otherwise (B.2)

where p(Ψk(yt)|xkt ) is the likelihood of the state given the observation, Ψk is a function that
maps the raw data yt into the measurement space of the k-th feature and ut ∼ Unif(R) is a
random process for false alarm, R being the domain of yt. This likelihood depends on the
class associated to the feature and in general is different among the features. In the rest of the
paper, we will omit writing the function Ψ for notational simplicity.

Association among observations and features is obtained through a joint association event
[Oh, Russell, & Sastry, 2004] αt = {T 0

t , T
1
t , . . . , T

Kt
t }, where T kt is the set of observations

associated to the feature k. At every time step, the system associates an observation zt with
a feature: for instance, if zt is associated with the k-th feature, then the correspondent track
T kt = T kt−1 ∪{zt} will be updated. Therefore the goal of the system is to provide E(xkt |z1:t),
which is dependent on P (αt|z1:t).

In the following, for notational simplicity, we will make use of the term label to address
the association between observations and features. We map an association event into a se-
quence of labels L1:t = {L1, · · · , Lt} where Li = k if the observation i is associated to the
feature k. Using this notation, we can derive the incremental update equation of the filter.

B.2 Rao-Blackwellized Particle Filters
The previous problem can be well described within the Bayesian framework, resulting in es-
timating the joint posterior over the associations and features’ state, p(X1:t, L1:t|z1:t), given
the history of observations. Once obtained this distribution, it is straightforward to obtain
p(Xt|z1:t). One way is to simply marginalize out the association. This is similar to a Joint
Probabilistic Data Association Filter, which simulates an exact Bayes filter and compute the
expected posterior by just marginalizing out the last association made [Shalom & Fortmann,
1988]. A second way is to obtain p(Xt|z1:t, L̂1:t), being L̂1:t a Maximum A Posteriori esti-
mator for p(L1:t|z1:t). This approach is in a way similar to the Multiple Hypothesis Tracker;
the main difference lies in the fact that RBPF is a fully probabilistic approach, while MHT
uses some deterministic rules to add and delete association tracks.

Exact inference in such a model is not possible, since the number of possible associations
grows hyper-exponentially with the number of measurements. As a matter of fact, this num-
ber is equal to the number of set partitions of the set of measurements, which is known as the
Bell number [Nijenhuis & Wilf, 1978].

However, only a small fraction of the set partitions is feasible with respect to the real
associations. Based on this observation, it is reasonable, both from a theoretical and practical
perspective, to approximate the distribution of the associations with a sum of different sam-
ples. The reason behind this is that the mass of the distribution is concentrated only in a small
portion of the state space. In other words, we want to focus our attention on the most probable
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associations, which are represented by the samples drawn from the association distribution,
by using Monte Carlo methods [Doucet et al., 2000a].

The key idea of the Rao-Blackwellized particle filter for this problem is to estimate a pos-
terior p(L1:t|z1:t) about potential labels L1:t of the measurements given the observations z1:t,
and to use this posterior to compute a posterior over features’ state and feature association.

p(X1:t, L1:t|z1:t) = p(X1:t | L1:t, z1:t)p(L1:t | z1:t). (B.3)

This can be done efficiently, when the posterior over features’ state p(X1:t | L1:t, z1:t) can
be computed analytically given the knowledge of L1:t and z1:t. Luckily, there are several
situations where this assumption holds (like for Linear Gaussian or Hidden Markov models).
This technique is known as Rao-Blackwellized Particle Filter and is proved to reduce the
variance of the estimate, according to the Rao-Blackwell Theorem [Doucet et al., 2000b].

In the next section we will show how to use the Rao Blackwellized Particle Filters in this
context, by providing the proposal distribution and the weight computation, first when the
number of features is fixed and known, then when their number is not known in advance and
can increase over time.

B.3 State Estimation with RBPF
In the previous section, we described the general framework of Rao Blackwellized Particle
Filter. Here we show how to instantiate the framework in the context of heterogeneous fea-
tures’ state estimation. To this end, we need to define what information the samples (particles)
represent and the nature of the distributions involved.

Each sample is characterized by the following N + 2-uple:

s
(i)
t =

〈
w

(i)
t , L

(i)
1:t, θ

1,(i)
t , θ

2,(i)
t , . . . , θ

N,(i)
t

〉
(B.4)

where w(i)
t represents the importance weight, L(i)

1:t the association history and each θn,(i)t the
sufficient statistic of the corresponding feature, e.g. mean and variance if they are represented
as Gaussians.

Recalling that the association is independent from the past reliability given the last one3,
we can write the distribution in the following recursive way

p(L1:t|z1:t) ∝ p(yt|L1:t, y1:t−1, Rel(y1:t)) ·
p(L1:t|Rel(y1:t), y1:t−1) (B.5)

= p(yt|L1:t, y1:t−1)p(Lt|Rel(yt), L1:t−1) ·
p(L1:t−1|z1:t−1) (B.6)

We now have a recursive distribution, which is well suited to be implemented in the
Sequential Monte Carlo framework. We choose as proposal the distribution:

p(Lt|Rel(yt), L1:t−1) (B.7)

While this is not the optimal proposal, as we do not use the measurements yt, the reliability
allows us to highly reduce the association space. This is because the reliability can be seen

3The past reliabilities are embedded in the previous labels, thus resulting in this independence property
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as a direct observation of the label, as it reflects the information provided by the detection
algorithm. Experimental results show the differences between using or not such information
(see Section B.4)

After the sampling stage, we apply the importance sampling principle, obtaining the fol-
lowing weight distribution:

wt = wt−1p(yt|L1:t, y1:t−1) (B.8)

which is easy to evaluate given the fact that we have already computed the predicted state
distribution p(Xt|L1:t, y1:t) using the sufficient statistics embedded within the particles.

In the end, we adopt an adaptive resampling schema, by considering the effective number
of particles [Liu, 1996]. This number,

Neff (t) =
1∑N

i=1

(
w

(i)
t

)2 (B.9)

is an approximative measure which tells us how well the set of samples approximates the
goal distribution and is strongly related to the variance in the particle weights. We perform a
resampling step when this quantity falls below a certain threshold, Neff < Ntsh.

B.3.1 Fixed and known number of features
When the number of features to estimate is fixed and known, the problem is slightly simpler,
as the association is constrained to one of the existing classes.

With respect to the proposal distribution, we have two important distributions to take into
account. The first is given by the frequency of the different features in the environment.
The second is given by the reliability and reflects our degree of belief about the association
provided. We can use the fact that in a fixed and known number of features, the new label Lt
is given by the product p(Rel(yt)|Lt)p(Lt|L1:t−1) as the reliability does not depend on the
previous labels. We can obtain p(Lt|L1:t−1) by marginalizing the multinomial distribution
over the past associations. The parameters of this distribution have to be estimated, in order
to reflect the real labels’ frequency. To do so, we use a MAP estimate, using the Dirichlet
distribution as a conjugate prior.

As for the weight, we need to define the conditional likelihood distribution, which strongly
depends on the label associated to the reading. We can define the weight, by marginalizing
with respect to the estimated state of the feature, obtaining:

p(yt|L1:t, y1:t−1) =
∫
p(yt|xLtt )p(xLtt |TLtt )dxLtt (B.10)

This integral can be computed analytically for some distribution, such as Gaussians and dis-
crete distributions. Otherwise, numerical or stochastic methods can be used to obtain a close
approximation.

B.3.2 Variable and unknown number of features
The previous framework can be extended to handle an unknown number of features. First
of all, we notice that the main difference in dealing with a known or unknown number of
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features lies in the sampling procedure, namely in the distribution p(Lt|Rel(yt), L1:t−1). In
this scenario, we need to focus also on the fact that observations can come from an unknown
feature, and model this fact appropriately. We use the Dirichlet Process, in order to esti-
mate the probability of having a new class and assigning the observation to already existing
classes. This distribution is often used in the infinite mixture model, and is considered a nat-
ural extension of the standard Dirichlet distribution when the number of classes is not known
in advance [Ranganathan & Dellaert, 2006; Blackwell & MacQueen, 1973].

Using the Dirichlet Process as our prior over the parameters of p(Lt|L1:t−1), and the
independence of the reliability of time t from previous labeling, we can still reduce ourselves
to:

p(Lt|Rel(yt), L1:t−1) = p(Rel(yt)|Lt)p(Lt|L1:t−1) (B.11)

when:

p(Lt|L1:t−1) =

{
|T it−1|
|L1:t−1|+c i = 1, . . . ,K

c
|L1:t−1|+c i = K + 1

(B.12)

with c encoding our belief on the number of features in the environment.
The importance weight defined in Equation B.10 for the fixed case is still valid in this

situations We just want to notice that in the case of the new feature, the integral reduces
to the computation of the normalizing factor of the distribution (as the state is equal to the
observation due to the initialization).

B.4 Experiments
We use an abstract simulator to perform an extensive quantitative analysis of correctness an
completeness of the association algorithm. We use a Markov Chain to simulate the obser-
vations arrival. This chain is tuned in order to simulate a robot path inside an environment.
This is achieved by giving higher probability to persistent move in the chain and it results in
a burst of observations of one feature, followed by a burst of another feature and so on. The
state of the features is given by a simple one dimensional Gaussian, as we decided to focus
our attention on the association process, rather than on the estimation one. The observation of
the state are sampled from a Gaussian distribution with different values for the variance. The
reliability values for the feature association are sampled from a Dirichlet distribution, whose
parameters are tuned in order to obtain slightly higher values of reliability for the correct
association, simulating a real detection algorithm.

We performed several experiments, varying the number of features to be tracked, the
peakness of the Dirichlet distribution and the variance of the observations. In all those cases,
we compute two measures, in order to evaluate the performances.

The first metric is related to the correctness of the association, and is given by:

TruePositive

TruePositive+ FalsePositive
(B.13)

This value measures the percentage of correct associations made by the algorithm, with re-
spect to the complete set of associations provided.

The second metric is related to the completeness of the association, and is given by:

TruePositive

TruePositive+ FalseNegative
(B.14)
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Figure B.1: Number of features: The graphs show the variation of the two metrics with

respect to the number of features and the use of reliability. We show the results regarding

correctness (top) and completeness (bottom)

This value measures the percentage of correct associations made by the algorithm, with re-
spect to the complete set of correct associations.

In order to prove the efficacy of using the reliability, we also performed the same ex-
periments without using the reliability in the data association process, notice that, such an
approach is similar to the one presented in [Sarkka, Vehtari, & Lampinen, 2004]. We use the
same parameters and the input data for both the approaches. The data set was composed of
700 simulated observations, with 5 runs with different random seeds. The number of parti-
cles used in the experiments was 1000, which allows for real time execution. The features
are scattered within the environment at about 10m of distance.

In the first experiment, we analyze the variation of the performances when varying the
number of features. When the number of features increases the performance of both the
algorithms decreases, as one would expected. However, this decrease in performance is much
more evident when the reliability is not taken into account, as can be seen in Figure B.1. This
is due to the increased combinatorial space when more features are presented. The reliability
provides us some kind of ”hint” about the right associations, which reduces the search space.
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Figure B.3: Reliability: The graphs show the variation of the two metrics with respect to the

peakiness of the reliability. Notice that a reliability of 0 means not using the reliability.

In the second experiment, we vary the precision of the sensor. The sensor is related to
the analytical part of the features’ state and its variance influences the importance weight
computation. Figure B.2 shows the result. As we can see, less precision in the sensor has
some impact on the precision of the algorithm. This is due to the fact that when features are
too close in the state space, there is not so much difference in the importance weight of a
wrong association. As before the results show that even if there is a decrease in performance,
such decrease is much more evident when the reliability is not taken into account.

Finally, we performed some experiments to show how the performance varies according
to different levels of reliability. In Figure B.3 the results are plotted. As one would expected,
the performance increases when the reliability grows. In the experiments we let this value to
vary from 0.4 percentage of getting the real association up to a 0.9 one. When the reliability
value is 0 reliability is not used in the algorithm.

Further experiments with high dimensional features results in similar classification rate,
showing good robustness of the association with respect to the feature structure.
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