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Abstract—In this paper we present a probabilistic
model for spatio-temporal patterns of human activities
that enable robots to blend themselves into the work-
flows and daily routines of people. The model, called
spatial affordance map, is a non-homogeneous spatial
Poisson process that relates space, time and occurrence
probability of activity events. We describe how learning
and inference is made and present a novel planning
algorithm that produces paths which maximize the
probability to encounter a person. We show that the
problem is a special class of the orienteering problem
that can be solved as a finite horizon Markov decision
process.

We develop a simulator of populated office environ-
ments to validate the model and the planning algo-
rithm. The simulated agents follow activity patterns
learned by administering a questionnaire to 27 col-
leagues over two weeks. The experiments shows that
the model is statistically valid with respect to both
the Anderson-Darling test and the expected waiting
time estimation. They further show that the proposed
algorithm is able to find optimal paths.

I. Introduction

Robots that operate in human environments require the
ability to sense people and recognize their activities. But
beyond that, they also need the ability to reason about the
places and times when and where people are engaged into
which activity. Such a model – over large time and space
scales – enables a robot to coordinate its motions, tasks
and schedules with the patterns of human activities, giving
it the ability to smoothly blend itself into the workflows
and daily routines of people. We believe that this ability
is key in the attempt to build socially acceptable robots
for many domestic and service applications.

In this paper, we approach this problem by the spatial
affordance map, a model that represents human activity
events as a rate function of a non-homogenous spatial
Poisson process. We present how learning and inference
is made with the spatial affordance map and propose an
algorithm able to find paths that maximize the probability
of finding a person. This is a under-explored planning
problem to our knowledge, relevant in a number of ap-
plications: a health care robot that needs to find a nurse
fast, a surveillance robot that must find a patrolling human
colleague, a receptionist robot that can answer the query
of finding a particular person at a given time, or a delivery
robot that brings urgent goods to people such as coffees
getting cold (Fig. 1).

The problem of planning maximum encounter proba-
biltiy paths has not yet been addressed in this sense to

Fig. 1. Example scenario. The picture shows an example path
computed by the robot in our simulated environment.

our knowledge. Most related is the work by Roy et al. [1]
in which the authors approach a similar problem as with
a partially observable Markov decision process where the
position of a person is not observable and modeled with
a sample-based distribution. In contrast to our approach,
they have no prior information on how the environment is
used by the people, a vital information especially in large
scale environments.

Learning models of human behavior has been addressed
by several researchers. Kruse and Wahl [2] propose statisti-
cal grids whose cells hold temporal occupancy probabilities
of people and stochastic trajectories which are paths of
dynamic objects along which their appearance probability
is modeled by a Poisson process. The goal is to assess and
plan minimal collision probability paths. The grid and the
trajectories are learned from ceiling-mounted cameras.

Bruce and Gordon [3] learn goal locations in an environ-
ment from trajectories obtained by a laser-based people
tracker. Based on the assumption that people move in a
goal-oriented fashion, paths are planned from the location
of a person being tracked to the goal locations.

Bennewitz et al. [4] learn typical motion patterns that
people follow in an environment. The approach collects
trajectories of people with multiple statically mounted
laser scanners and combine similar trajectories to motion
patterns using EM clustering. From each pattern a Hidden
Markov Models is derived which enables a mobile robot to
predict the motion of people and to adapt its navigation
behavior accordingly.

Not only focused on human motion is the work by Ihler
and Smiyth [5]. The authors presents a non parametric
approach to learn time profiles of human activities. The
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rate function of a Poisson process is learned using non
parametric Bayesian models: the infinite mixture model
with a Dirichlet process prior. Although interesting and
related to our work, their approach does not consider the
spatial variation of activities.

All these works consider either the special case of human
motion or lack the ability to make inference in both time
and space. In contrast, the spatial affordance map is a
single representation for inference about spatio-temporal
behavior of people that coherently relates time, space and
occurrence probability of activity events. Accordingly, it
is able to process the following three queries that ask for
occurrence probability, time and space, respectively:

• What is the probability of an event within a given
time interval and area of space?

• How long do I have to wait until an event happens
with a given confidence in an area of space?

• Given a deadline, what is the path along which the
encounter probability of an event is optimized?

We will present the theory and give application examples
how the map is able to produce answers to these queries.
The name of the map lends itself from the view of human
activities as affordances that an environment offers to
human agents.

The paper is structured as follows: the next section
gives the theory of the spatial affordance map followed
by section III that explains how inference is made and
section IV that develops the planning algorithm. Section V
describes the people simulator we used in the experiments,
while section VI contains the experimental results. Finally,
section VII concludes the paper.

II. Spatial Affordance Map

The spatial affordance map is a non-homogeneous spa-
tial Poisson process. In this section, we explain its theory
and how learning is done in this case of a Poisson process.

Under the assumption that events in time occur inde-
pendently of one another, a Poisson process can deal with
distributions of time intervals between events. Concretely,
let N(t) be a discrete random variable to represent the
number of events occurring up to time t with rate λ.
Then we have that N(t) follows a Poisson distribution with
parameter λt

P (N(t) = k) =
e−λt(λt)k

k!
k = 0, 1, . . . (1)

In general, the rate parameter may change over time. In
this case, the generalized rate function is given as λ(t) and
the expected number of events between time a and b is

λa,b =

∫ b

a

λ(u) du. (2)

A homogeneous Poisson process is a special case of a non-
homogeneous process with constant rate λ(t) = λ.

The spatial Poisson process introduces a spatial depen-
dency on the rate function given as λ(~x, t) with ~x ∈ X

where X is a vector space such as R2 or R3. For any subset
S ⊂ X of finite extent (e.g. an area in space), the number
of events occurring inside this area can be modeled as a
Poisson process with associated rate function λS(t) such
that

λS(t) =

∫
S

λ(~x, t) d~x. (3)

In the case that this generalized rate function is a separable
function of time and space, we have:

λ(~x, t) = f(~x)λ(t) (4)

for some function f(~x) for which we can demand∫
X

f(~x) d~x = 1 (5)

without loss of generality. This particular decomposition
allows us to decouple the occurrence of events between
time and space. Given Eq. 5, λ(t) defines the occurrence
rate of events, while f(~x) can be interpreted as a proba-
bility distribution on where the event occurs in space.

Learning the spatio-temporal distribution of events in
an environment is equivalent to learn the generalized rate
function λ(~x, t). However, learning the full continuous
function is a highly expensive process. For this reason, we
approximate the non-homogeneous spatial Poisson process
with a piecewise homogeneous one. The approximation is
performed by discretizing the environment into a tridimen-
sional grid, where each cell represents a local – in terms
of space and time – homogeneous Poisson process with a
constant rate,

Pijτ (N(t) = k) =
e−λijτ (t−tτ )(λijτ (t− tτ ))k

k!
(6)

with k = 0, 1, . . . and tτ ≤ t < tτ+1 and where λijτ is
assumed to be constant. Finally, the spatial affordance
map represents the generalized rate function λ(~x, t) using
a grid approximation,

λ(~x, t) '
∑
ijτ

λijτ1ijτ (~x, t) (7)

with 1ijτ (~x, t) being the indicator function.
Instead of a grid approximation, other tessellation

schemes in space and time such as octrees, regions of ho-
mogeneous Poisson rates or function approximators [5] can
equally be used. Subdivision of space and time into regions
of fixed Poisson rates has two interesting properties. First,
having intervals of constant rate over time, the preferable
decomposition in Eq. 4 holds. Second, we can instantly
infer properties of the environment without computing
expensive integrals as to be shown in the next section.

We take a Bayesian learning approach using Gamma pri-
ors to estimate the Poisson rate parameter of each cell. We
discard the use of a maximum likelihood approach since,
without priors, it cannot properly initialize never observed
cells. The map is learned from human activity observations
k1,...,n that can be obtained either from ceiling-mounted
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cameras [2], wearable devices or the exteroceptive sensors
of the mobile robot as in Luber et al. [6]. Here they will
come from a simulator of people in office environments
described in Section V. The Bayesian approach allows
for learning of the spatial affordance map by counting in
a grid. This makes life-long learning particularly simple
as new information can be added at any time by one
or multiple robots. More details on learning the spatial
affordance map can also be found in [6].

III. Inference in the Spatial Affordance Map

This section describes how inference in the spatial affor-
dance map is made. For this purpose we will only consider
activity events ki that correspond to observations of people
in the environment (in [6] this has been implemented using
track confirmations from a people tracker). We will show
how the probability of encountering at least one person
along a path can be computed and, as a side effect, how
long does the robot need to wait until this probability is
above a confidence.

Waiting Time Estimation

One of the key properties of the Poisson process is that
it is able to explicitly model waiting time. For notation
simplicity, we assume that the robot arrives at a location
and starts waiting at time t0. Let us consider T1 as the
time when the first person arrives. Clearly, this person
arrives at time T1 > t if and only if the number of arrivals
between time t and t0 is 0. Combining this property with
the probability of a number of homogeneous Poisson events
in an interval gives

p(T1 > t; t0) = p(N(t)−N(t0) = 0) (8)

= e
−

∫ t
t0
λ(u) du

, (9)

where for simplicity we have ignored the spatial dimension.
Then, the waiting time until the first arrival T1 has an
exponential distribution with parameter λ(t)

p(t;λ(t)) =

{
λ(t)e

−
∫ t
t0
λ(u) du

if t ≥ t0,
0 if t < t0.

(10)

Defining the area of interaction I(~x) as a function of the
robot pose (which e.g. can be a room), we have that
the waiting time in the position ~x has an exponential
distribution with parameter

λI(~x, t) =

∫
I(~x)

λ(~χ, t)d~χ (11)

where λ(~x, t) is the general rate function.
The waiting time is then estimated considering the

cumulative density function of the exponential distribu-
tion Eq. 10. Let ρ be a confidence value such as 0.95 or
0.99, the waiting time is the value of t such that p(T1 ≤
t) ≥ ρ. Considering the cumulative density function of the
exponential distribution we have

p(T1 ≤ t) = 1− e−
∫ t
t0
λI(~x,u)du (12)

where we only consider the positive axis for notation
simplicity. This leads to

p(T1 ≤ t) ≥ ρ =⇒ 1− e−
∫ t
t0
λI(~x,u)du ≥ ρ (13)

and ∫ t

t0

λI(~x, u)du ≥ − log(1− ρ). (14)

A closed form solution to this integral inequality depends
on the form of the rate function employed and is not
always available. In the case of our grid, we can exploit
the piecewise constant approximation and the solution for
the homogenous process case. In this way, we obtain a
recursive formula to compute the minimum waiting time
w(t0, ρ) for a confidence value ρ and a starting time t0 as:

w(t0, ρ) ≥

{
t0 − log(1−ρ)

λijτ
if p(T1 ≤ tτ+1) ≥ ρ,

w(tτ+1, ρ̂) otherwise
(15)

ρ̂ = 1− elog(1−ρ)+(tτ+1−tτ )λijτ (16)

This is the expected waiting time given a confidence value.
Knowledge about waiting times can help a robot to co-

ordinate its activities with the learned patterns of human
activities in an environment. However, if a robot needs
to find a person proactively, planning is required which is
considered hereafter.

Encounter Probability Paths

Formally, we seek to find the path, P, that maximizes
the encounter probability within a given time tmax. Since
a path is a mapping from time to space, P : t → ~x, we
have that the number of people encountered in a certain
path follows a non-homogeneous Poisson process whose
rate function depends on the path itself

λP(t) = λ(P(t), t). (17)

The probability of encountering at least a person along
a path is obtained by considering the probability of not
encountering anyone and using the law of total probability

p(NP(tmax) > 0) = 1− p(N(tmax) = 0)

= 1− e−
∫ tmax
t0

λP(u)du
, (18)

resulting in the best path being

P∗ = argmax
P

p(NP(tmax) > 0). (19)

IV. Maximum Encounter Probability Planning

Two aspects have to be addressed in order to obtain
valid paths P. A first aspect is to compute the path rate
described in Eq. 17. Considering the grid approximation
and assuming the robot moves at constant speed, the path
can be approximated with the sequence of grid cells the
robot traverses. The integral then becomes the sum of
the Poisson rate over those cells. A second problem arises
in the maximization step of Eq. 19. This problem is an
instance of the orienteering problem that has been shown
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Algorithm 1: Encounter Probability Planning

In: Rate λ(~x, t); time tmax; initial state s0;
Out: The best path P∗;
Compute the horizon N ;1

JN (s)← λijτ ∀s;2

for k ← N − 1 to 0 do3

Jk(s)← max
a

[
R(s, a) +

∑
s′

p(s′|s, a)Jk+1(s
′)

]
;

4

A∗k(s)← argmax
a

[
R(s, a) +

∑
s′

p(s′|s, a)Jk+1(s
′)

]
;

5

end6

P∗(0)← s0;7

for k ← 1 to N do8

s← P ∗(k − 1);9

P∗(k)← E
[
p(s′|s,A∗k−1(s))

]
;10

end11

return P∗;12

to be NP-hard [7]. The essence of the problem is to find a
path that maximize the sum of certain rewards within a
limited amount of time, where in our setting, the rewards
are the individual Poisson rates of each cell.

In our case, it can be shown that in our setting a finite-
horizon Markov decision process (MDP) can solve the
problem in polynomial time using dynamic programming
and the Bellmann equation. This is possible since the map
consists in a regular grid in Cartesian space that allows us
to propagate the path rewards in a flooding manner.

Formally, an MDP is a probabilistic model for sequential
decision problems. At each time step, the process is in
some state s ∈ S, and the decision maker may choose
any action a ∈ A(s) that is available in state s. The
process responds at the next time step by randomly
moving into a new state s′, and giving the decision maker
a corresponding reward R(s, a). The probability that the
system will move into s′ is influenced by the chosen action
according to the state transition distribution p(s′|s, a) but
it is conditionally independent from any previous state or
action taken, obeying to the Markov property.

Our state space is represented by the cells of the spatial
affordance map that are within the free space of the
environment and the time interval of the day the robot is
in that cell, s = {i, j, τ}. In each cell, a set of (maximum)
nine actions are defined and they account for movements
in the 8-neighborhood and waiting in the current cell.
The state transition distribution may be derived from
the robot odometry reflecing its accuracy. The reward
function is defined as the reward of the state s′, obtained
by performing action a in state s and is defined as

R(s, a) =
∑
s′

λi′j′τ ′p(s′|s, a). (20)

To obtain a maximum encounter probability path given
an initial state s0 and a deadline tmax we seek to find a
deterministic policy π = {s0, a0, . . . , sn, an, . . .} such that

it maximizes the expected total reward. By discretizing
the time in a finite number of steps called horizon N , this
minimization problem is solved using backwards induction,
solving N single stage problems of increasing horizon. The
resulting procedure is given in Algorithm 1.

V. Simulator

For evaluating the model and the planner, we developed
a people simulator for office-like environments. The simula-
tor models the floor of our university building (see Fig. 1).
Simulation in this case is needed as with real humans,
experiments cannot be reproduced and simulated agents
do not change their behavior in the presence of robots.

The simulator models a generic work day from 8 am
to 7 pm in which a number of agents perform typical
office activities (ten in our case). To learn realistic activity
patterns, an anonymous questionnaire has been handed
out to 27 colleagues. The subjects filled in their activities
over a work day (e.g. arriving to work, working, eating,
smoking, drinking coffee, going to the restroom, etc.)
including the time and duration of each activity. From this
information we learned a discrete distribution of when each
activity is performed over a two week period. To generate
the actual activities of the simulated agents we sample
from these distributions.

The engine follows the three-layered agent architecture
from [8] that in our case consists in the layers activity
scheduler, activity executor and action executor. At the
beginning of the day, the activity scheduler randomly
generates a fixed schedule for each agent. Every activity is
composed of a set of actions such as enter, move, stay or
leave, which in turn are activated and deactivated by the
activity executor. Once an action is activated, the action
executor takes care of its progress and signals back when
it reached its final state. The actual plans are generated
using A* with action costs that are randomly perturbed
to simulate some motion variability. Each time an agent
is engaged into an activity, its type and place form an
activity observation ki to learn the map.

VI. Experiments

For the experiments, we come back to the three types of
queries given in section I that ask for occurrence probabil-
ity, time and space. The first query is the forward applica-
tion of the Poisson process. It allows us to understand if
the model is statistically sound, that is, if a spatial Poisson
process is an appropriate model for patterns of human
activities. The second query is related to waiting time
estimation. By testing the prediction accuracy of the map
we again obtain experimental evidence for its statistical
validity. The maximum encounter probability planner is
then evaluated to demonstrate the third type of query.

For the experiment, the map is learned from activities of
ten agents over ten days, followed by a series of ten testing
days. We use a grid resolution of 0.25m in x and y and 1
hour in time resulting in 11 time slots per working day.
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Fig. 2. The simulator that models behavior of people in office
environments describing one floor in our building. The picture shows
a top view of the simulated environment.
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Fig. 3. Left: Anderson-Darling test shown for the simulated
environment. Non-white cells pass the test (the darker the better),
light blue cells have never been visited by agents and are excluded
from the test. Overall, 95% of the cells pass the test. Right: Waiting
time experiment. The diagram shows the actual frequency versus the
expected confidence for the predicted waiting time. The plot shows
close correspondence to the ideal result which is the diagonal.

A. Model Evaluation: Anderson-Darling Test

The first experiments quantifies the goodness of fit of
the map with respect to the learned rate and its predic-
tion capability. The goodness of fit is tested using the
Anderson-Darling test. The test looks for evidence that a
given sample of data did not arise from a given probability
distribution.

In our setting, we tested each cell of the spatial affor-
dance map and checked if the interarrival times of the
people follow the learned exponential distribution or not.
The results of this test are showed in Fig. 3. The map
shows the Anderson-Darling test score for the cells in the
environment. White cells are places where the test failed,
darker cells are places where the test was succesfull (the
darker the better). Light blue cells have never been used
by the simulated agents and are ignored.

Overall, the test was successful on 95% of the cells. To
study the effect of the time-variable Poisson rate, that is,
the case of a temporally homogeneous Poisson process, we
have also tested a map with a single, eleven hour time slot.
The success rate for this map is only 54%. Although this
may seems a low value, the next test will show that it will
not compromise the prediction performances. The main
reason is that when the model is not accurate enough, it
tends to yield conservative probability estimates.
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Fig. 5. Encounter probabiltiy path experiment. The picture shows
the success rate versus the path length for the different strategies. As
expected, the MDP strategy outperforms the heuristic planners.

B. Model Evaluation: Waiting Time

In this test, we check the ability of the model to actually
predict the waiting time until a person is encountered up to
a certain confidence. We perform the test by sampling 1000
random positions in space and time for a set of confidence
values ranging from 5% to 95% with an increment of 5%.
In each of these space/time-positions, the waiting time
for the first arrival event has been computed according
to Eq. 15. During the testing phase, we check the frequency
of encountering a person during this interval and compared
it to the expected confidence. In the perfect model these
two values coincide. Fig. 3 shows the corresponding curve,
for both the regular map and the map with a single eleven
hour slot, where we added the trivial values for 0% and
100% confidence. As can be seen, the actual frequency
closely matches the predicted confidence, resulting in very
precise waiting time predictions. Even the single time slot
map is accurate despite the low rate in the Anderson
Darling test. The insight is that the model is intrinsically
conservative, also shown by the curve being higher than
the diagonal.

C. Maximum Encounter Probability Planning

The experiment that corresponds to the third query
demonstrates the ability of the MDP planner to generate
optimal paths in terms of encounter probability. We com-
pare the MDP paths with four other heuristic strategies:
local goal (LOC), global goal (GLO), random walk (RND)
and waiting (WAT). The local and global goal strategies
are informed in that they use the spatial affordance map.
They are both greedy as they plan the shortest paths
to the cell with the highest encounter probability using
A*. This cell is either computed in a local neighborhood
(LOC), or in the entire map (GLO). If the deadline is
shorter then the length of the resulting path, the path
is truncated, otherwise the path waits at the local or
global maximum, respectively. The RND strategy follows a
random walk from the start location and the WAT strategy
simply waits on the spot until a person drops by. We gen-
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a) pMDP = 0.26 b) pMDP = 0.66 c) pMDP = 0.94 d) pMDP = 0.89, pLOC = 0.83

Fig. 4. Maximum encounter probability planning. The red path is the solution of the MDP strategy, the blue path the result of the GLO
strategy. Figures a), b) and c) show the MDP paths from the same start location with increasing deadlines. The resulting paths lead the
robot to regions of increasing Poisson rates. Figure d) compares the MDP and the LOC strategies for the same start location and deadline.
While the LOC strategy greedily aims for the shortest path, the MDP algorithm correctly finds a path across a high-density area that
maximizes the encounter probability.

erate 500 random positions in space-time, for each of them
we compute the paths with increasing lengths ranging from
25 to 361 with an increment of 24 steps – corresponding
to deadlines from 1 to 15 minutes with increments of 1
minute at the speed of 0.4m/s. For different speeds more
steps may be considered but the curves will show the same
behavior. Fig. 5 shows the result of the comparison while
Fig. 4 gives example paths.

As can be seen, the MDP procedure is the best strategy,
waiting in the spot is the worse strategy. Interestingly,
there is a clear difference between the informed strategies
(MDP, LOC, GLO) and the uninformed strategies (RND,
WAT), showing the importance of the spatial affordance
map for this type of task. The small difference between
the LOC and the GLO strategies is due to the size of the
environment, where after some time the global and local
maximum are in the same place. Both strategies are not
much worse than the MDP which is because they have
been developed to imitate its behavior. The MDP strategy
also tries to reach the global maximum and waits there,
but it does so by trading off path length with encounter
probability. A clear difference can be seen in Fig. 4 d),
where the MDP solution (red) takes the longer path to the
maximum across a high density area, where the LOC path
(blue) simply takes the shortest path through a low density
region. Such differences will become more accentuated
with larger environments and more complex topologies.

These results clearly show the importance of prior
knowledge of human space usage, an information not used
in prior work [1] representing one of the major contribu-
tions of this paper.

VII. Conclusions

In this paper, we presented the spatial affordance map
as a model to learn and reason about spatio-temporal
patterns of human activities and demonstrated its use
to estimate waiting times to activity events and to plan
maximum encounter probability paths.

We performed statistical tests to evaluate the validity
of the spatial affordance map. To this end, we developed
a simulator in which agent behavior is derived from a

questionaire study with 27 subjects over two weeks. The
tests show that the model is a sound statistical model as
well as a precise and effective predictor of waiting times.

The approach of a spatial Poisson process enabled us
to formulate the encounter probability planning problem
as a finite horizon Markov decision process. We compared
the proposed MDP planner with two informed and two
uninformed heuristic planners where informedness refers
to the use of the map. As expected, the MDP planner
outperforms all other planners. However, one heuristic
planner has a comparable performance to the MDP al-
gorithm. It is greedy but scales better with environment
size representing a viable alternative in large-scale appli-
cations.
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