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Abstract— Local image features are used for a wide range
of applications in computer vision and range imaging. While
there is a great variety of detector-descriptor combinations for
image data and 3D point clouds, there is no general method
readily available for 2D range data. For this reason, the paper
first proposes a set of benchmark experiments on detector re-
peatability and descriptor matching performance using known
indoor and outdoor data sets for robot navigation. Secondly,
the paper introduces FLIRT that stands for Fast Laser Interest
Region Transform, a multi-scale interest region operator for 2D
range data. FLIRT combines the best detector with the best
descriptor, experimentally found in a comprehensive analysis
of alternative detector and descriptor approaches. The analysis
yields repeatability and matching performance results similar to
the values found for features in the computer vision literature,
encouraging a wide range of applications of FLIRT on 2D
range data. We finally show how FLIRT can be used in
conjunction with RANSAC to address the loop closing/global
localization problem in SLAM in indoor as well as outdoor
environments. The results demonstrate that FLIRT features
have a great potential for robot navigation in terms of precision-
recall performance, efficiency and generality.

I. INTRODUCTION

The introduction of local image features had a large

impact on many computer vision tasks such as object and

scene recognition, motion tracking, stereo correspondence,

or visual robot localization and SLAM. The typical strategy

is to select a set of regions at locations in image space and

compute a distinctive descriptor over those regions. This

yields a description of the image content as a collection

of local interest regions that can be used as candidates for

matching. For both, the detection of stable locations and the

description to encode the image structure, there is a great

variety of approaches available for image and 3D range data

[1], [2], [3], [4], [5].

The same reasons that make interest points attractive for

the above mentioned domains also apply to 2D range data as

produced by the widely employed laser scanners in robotics.

For robot navigation, interest points have the potential to be

an alternative to feature-based and grid-based approaches.

While both paradigms have been proved to be successful

under application-like conditions [6], [7], they both have

strengths and weaknesses. Features allow for compact map

representations and high accuracy but rely on predefined

geometric models. Dense approaches using raw data or grids

are general in that sense but less efficient and operate with

map representations that scale less well with environment

size and dimensionality.
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Fig. 1. Example matching of two scans from a laser range finder of the
same scene using RANSAC. The figure shows the extracted FLIRT features
for both scans and the 16 inlier correspondences.

Interest points, on the other hand, combine the compact-

ness of discrete features and the generality of raw range data.

They further allow for early sensor fusion with vision and

an unified treatment of laser and image data.

A comparison of different detectors and descriptors for

images can be found in Mikolajczyk et al. [8], [9]. For

3D data, several methods have been proposed to extend

the scale space from images to 3D point clouds, replacing

the regular image lattice with surfaces represented by a

connectivity mesh. A seminal work by Taubin [10] replaced

the continuous Laplacian operator ∇ from the diffusion

equation by its discrete counterpart, the graph Laplacian ∇g.

A different approach has been proposed by Pauly et al. [11],

where a surface variation quantity is computed. This quantity

is formed by the eigenvalues of the sample covariance matrix

computed in a local neighborhood of sampled points. The

scale at a point is then the neighborhood size for which the

surface variation achieves a local extrema. Novatnack and

Nishino [12] detect multi-scale features using a representa-

tion of the surface geometry. This representation is encoded

by the surface normals embedded in a regular and dense

2D domain. The approach, however, relies on a connectivity

mesh to construct the parametrization, and on the availability

of good surface normals. Unnikrishnan et al. [13] define an

integral operator that maps the input curve into its multi-

scale parametrization. The operator is defined in geodesic

coordinates along the curve with interest points found as

local extrema in a geodesic neighborhood. Using data from

a laser range finder, Cole et al. [14] propose an information-

theoretic measure of local saliency to find natural features in

measurement space, capturing the geometry of intrinsically

interesting surface patches. However, the saliency compu-

tation is expensive for an exhaustive search and the authors

compute the saliency values only for randomly picked points.

For 2D range data, there is little related work. Closest to

this paper is the line of work by Bosse and Zlot [15], [16].

In [15] the authors define entire laser scans as features and

use orientation histograms to describe them. In [16], several

detector/descriptor-pairs for 2D range data are evaluated for
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the task of place recognition in a graphical, submap-based

SLAM application. While interesting, the main difference

to our approach, is that with a descriptor support region of

9× 9m and being defined on submaps (collection of 20-30

scans spaced 1−2m apart), their approach is a submap charac-

terization technique rather than a local interest point operator.

While this property was not a limitation for obtaining the

good results presented in [16], we are interested in designing

a general-purpose multi-scale keypoint for 2D range data that

retains the important concept of locality which was key to the

impact of interest points in computer vision. FLIRT features

have been designed in this spirit: they are defined locally

(in support regions of typically 0.5m radius) and on a single

scan.

The reasons why 2D range data are different from image

data and 3D point clouds are manifold. As a naive approach,

one could apply the techniques from computer vision to

range data, replacing the image intensity values with the

range signal. While this approach leads to some results, it is

not able to deal with many interesting structures since range

variations around such structures can be weak (corners are an

example). This is because the nature of range data is different

from the nature of image data in that range data represent

a manifold in a higher-dimensional space. In the case of

3D range data, this manifold is a surface in 3D, for 2D

data it is a curve in Cartesian space. Further, for range data,

measurement sparsity is highly non-uniform and view-point

variant, partly due to the low angular resolution of range

finders compared to cameras. Finally, range data can be seen

to lie in between image data and 3D point clouds as they are

defined over an ordered lattice (the raw data space) but also

define a point cloud in Cartesian space. These differences

motivate a specifically derived interest point transform for

2D range data.

Accordingly, we propose a novel set of benchmark ex-

periments based on commonly used large-scale robot nav-

igation data sets to define an experimental testbed for the

comparison of detectors and descriptors for 2D range data.

We then evaluate a number of different detectors and de-

scriptor approaches to eventually propose FLIRT (Fast Laser

Interest Region Transform) as the most appropriate detector-

descriptor combination. Finally, we show how FLIRT can

be used in conjunction with RANSAC to address the loop

closing and global localization problem in SLAM.

The paper is structured as follows. Sections II and III

describe the different detectors and descriptors, respectively,

used in the comparison. The experiments are described in

Section IV. Finally, Section V concludes the paper.

II. DETECTORS

In this section we present four multi-scale detector ap-

proaches that are compared in this paper. Section II-A

presents a detector based on the raw range signal, while

Section II-B describes two detectors based on a normal

approximation of the range data. Section II-C introduces a

curvature based detector derived from Unnikrishnan et al.

[13]. These detectors look for interesting points on different

scales according to the discrete version of the scale space

theory [17].

The scale-space theory is a framework for multi-scale

signal representations to handle structures in the signal

that occur at different resolutions. The original signal, s(x)
is represented by a family of smoothed signals S(x; t),
parametrized by t, the size of the smoothing kernel used

for suppressing fine scale structures. Formally, we have

S(x; t) = (Kt ∗ s)(x) (1)

where Kt is the smoothing kernel. In general, this kernel

must not introduce new feature that do not correspond to

simplification of previous features at finer scales. A typical

choice in computer vision is the Gaussian kernel which has

been proved to satisfy this property in the continuous case.

However, Lindeberg [17] showed that in the discrete case,

the filter has the form

Kt(x) = e−t Ix(t) (2)

where Ix are the modified Bessel functions of integer order.

Loosely speaking, the kernel in Eq. (2) is a discrete equiv-

alent of the Gaussian with t corresponding to the standard

deviation.

Interest points can then be detected by considering lo-

cal maxima of differential invariants computed at different

scales. Typical invariants are the gradient magnitude for

edge detectors and the Laplacian or the determinant of the

Hessian matrix for blob detectors. With 1D data, there are

no invariants for ridge and corner detectors as they are only

defined for higher-dimensional signals such as image data.

Note that the scale space theory also defines a way to

make image representations invariant to scale by performing

automatic scale selection. The selection is based on local

maxima over scales of normalized derivatives. In range data,

however, there is no need of automatic scale selection or

scale invariance, since the scale of features can directly

be obtained from the distance information and represents

discriminative information for matching.

A. Range-Based Detector

The first detector finds interest points in scale-space with

a blob detector applied on the raw range information in the

laser scan. This choice is inspired by the SIFT approach that

uses a blob detector on the raw image data [1].

We construct the scale space using the discrete smoothing

operator defined in Eq. (2) with different values for the scale

t. For each t, interest points are detected by extracting the

local maxima and local minima of the Laplacian of the

signal. For one-dimensional signals the Laplacian operator

is equivalent to the determinant of the Hessian and both

are equal to the second derivative of the signal itself. This

derivative is computed by convolving the signal with the

discrete second derivative operator

∇2S(x; t) = (D2 ∗S)(x; t) (3)

(D2 ∗S)(x; t) = S(x−1; t)−2S(x; t)+S(x+1; t) (4)

Interest points are then found by detecting peaks in Eq. (3).
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Fig. 2. Curvature-based detector on synthetic data. The detector finds
the background part of the range discontinuity on the largest scale, the
foreground part on all scales, responds on all scales for the convex corner,
and on scale 1 and 2 for the the obtuse concave corner. The two diagrams at
the right show the interest points in signal space, with the raw range signal
and its smoothed variants at each scale (top) and the exponentially damped
signal F(x; t) on all scales (bottom). The maxima at the start and the end
are ignored as they are caused by the non-circularity of the data.

B. Normal-Based Detectors

Instead of the raw range signal, we can also consider a

local approximation of the normal direction at each point.

The resulting normal signal is treated in a similar way than

the range signal in the previous section. We propose two

detector methods based on this signal. The first one finds

interest points using an edge detector and the second one

uses a blob detector.

The normal direction is estimated by least squares fitting

of a line to a group of measurements in a sliding window

centered around the current point. For fitting, we minimize

the perpendicular error from the points onto the line so as

to have geometrically meaningful estimation results. With

measurements in polar coordinates, the fit expressions were

shown to have a closed-form solution [18]. With the normal

direction – obtained by the perpendicular to the line direction

– we again construct the scale space by applying the discrete

smoothing operator of Eq. (2) at different scales t.

The first detector responds to edges in the normal signal

and detects points as local maxima and local minima of

the gradient magnitude on every scale. For one-dimensional

signals the magnitude of the gradient is equal to the first

derivative of the signal itself. This derivative is computed

by convolving the signal with the discrete first derivative

operator,

‖∇S(x; t)‖ = (D1 ∗S)(x; t), (5)

(D1 ∗S)(x; t) =
1

2
(−S(x−1; t)+S(x+1; t)). (6)

The second detector responds to blobs in the normal signal

and detects points as local maxima and local minima of the

Laplacian of the signal on every scale, according to Eq. (3).

C. Curvature-Based Detector

We describe here the detector introduced by Unnikrishnan

and Hebert [13]. The rationale behind this detector is that

range data define a curve in Cartesian space and the scale

space theory should be applied to this curve and not to the

original signal. The authors define an integral operator that

maps the input curve into its multi-scale parametrization

S(α(s); t) =
∫

Γ
k(s,u; t)α(u)du (7)

k(s,u; t) = N (s−u; t) (8)

Fig. 3. Linear local shape context descriptor (left) and β -grid descriptor
(center: occupancy probability, right: variance) for an example interest point
in real data.

where Γ is the curve, α(s) the parametrization of the curve by

the geodesic coordinate s and k(s,u; t) is a Gaussian kernel.

The operator is then made invariant to the sampling density

of the curve by normalizing the smoothing kernel with the

(unknown) sampling density p(s; t),

k̃(s,u; t) =
k(s,u; t)

p(s; t)p(u; t)
(9)

p(s; t) =
∫

k(s,u; t)p(u)du. (10)

The sampling density p(s; t) at scale t is approximated by

local kernel density estimation using Gaussian kernels. This

yields a curve for each scale,

S̃(α(s); t) =
∫

Γ
k̃(s,u; t)α(u)du, (11)

of increased smoothness for increasing t’s. Interest points are

then detected by finding the local maxima of the exponential

damping expression

F(x; t) =
2‖x− S̃(α(s); t)‖

t
e−

2‖x−S̃(α(s);t)‖
t (12)

with the term ‖x − S̃(α(s); t)‖ being an error distance in

Cartesian space between the original curve and its smoothed

versions S̃(α(s); t). With this method, interest points at a

scale t correspond to places where t equals the inverse of

the local curvature of the smoothed signal S̃(α(s); t).
An example detection results is shown in Fig. 2

III. DESCRIPTORS

The task of the descriptor is to encode the local structure

in the scan around the detected interest point with high dis-

tinctive power. We propose two approaches for this purpose,

a modified shape context descriptor and a β -grid descriptor

based on insights from occupancy grid mapping.

A. Linear Local Shape Context

Shape context, introduced by Belongie et al. [4], is a

descriptor for finding correspondences between point sets.

The descriptor captures the distribution of points relative to

each point on the shape, represented in a log-polar histogram.

In our case, we are interested in the local structure of

the scan around the detected interest point and thus compute

the shape context only locally, within an area proportional

to the scale of the interest point. Further, we choose a

linear polar histogram since the type and extent of noise in

range data differ from the noise in image data. Measurement

errors in range data typically occur in radial direction (which

is viewpoint invariant) and can be relatively large. This
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Fig. 4. Example locations and their transformations. Left, top row: reference locations, bottom row: same scans subject to extra Gaussian noise (bottom
left, with σ = 0.25), oversampling (bottom center, 4 times), and subsampling (bottom right, 4 times). Right: View point changes given a reference location
indicated by the black robot and the black laser points. The gray robots are map locations with a 50% overlap with the scan of the reference location.

makes that, in practice, the small bins near the log-polar

histogram center tend to capture noise rather than the local

scan structure. By choosing a linear tessellation in polar

space, this effect is attenuated. More formally, the shape

context descriptor of a detected interest point pdet is the

histogram

hdet( j) = #{pi 6= pdet : (pi − pdet) ∈ bin j} (13)

where bin j is defined by discretizing the distance of the point

and the viewing angle (Fig. 3 left).

B. β -Grids

An important difference between image and range data is

that the latter not only encodes metric distance information

but also directed free-space information between the sensor

(emitting light or sound) and the measured object. This is

relevant extra information, not encoded in the shape context

descriptor. Occupancy grids naturally deal with free-space

information which is why we adopt this concept for the pur-

pose of the second descriptor considered here. Concretely, for

each detected interest point pdet we define a polar tessellation

of the space around pdet . Again, this tessellation is linear in

polar space, with a radius proportional to the scale of the

interest point. For estimating the occupancy probability, we

apply Bayesian parameter learning. This approach provides

a sound way to initialize cell probabilities and delivers a

variance estimation over the occupancy value.

We now derive the expressions for Bayesian parameter

estimation for occupancy grids. Consider the j-th bin, whose

likelihood to be hit by the beam z follows a Bernoulli

distribution, parametrized by the bin occupancy probability

occ j, where z is equal to 1 when the laser beam is reflected

inside the bin (hit) and is equal to 0 when the laser beam tra-

verses the bin (miss). The occupancy probability is modeled

using the conjugate prior of the Bernoulli which is the Beta

distribution, a continuous distribution defined on the interval

[0,1] and parametrized by the two positive shape parameters

α and β ,

pβ (occ j;α,β ) =
occ j

α−1(1−occ j)
β−1

B(α,β )
(14)

with B(α,β ) being the Euler beta function. Learning the

occupancy probability occ j consists in estimating the pa-

rameters of a Beta distribution (hence the name of the

descriptor). Over a sequence of measurements, that is, a

sequence of beams {zi}
n
i=1 that either hit or miss the bin,

it can be shown that the update rules for the parameters are

αi = αi−1 +∑1zi βi = βi−1 +∑1(1−zi). (15)

For i = 0, both parameters are set to 1 for which the Beta

distribution is uniform over [0,1]. The point estimate ôcc j is

then the expected value of the posterior Beta distribution

ôcc j = E[occ j] =
α

α +β
(16)

where we have substituted the update rules to get the final

expression as a function of the number of hits and misses.

Accordingly, the variance of this probability is

var(occ j) =
αβ

(α +β )2(α +β +1)
(17)

The collection of occupancy probabilities together with

their variance estimates in the polar histogram form the beta

grid descriptor of pdet (Fig. 3, center and right).

IV. EXPERIMENTS

The goal of an evaluation of detector and descriptor

approaches is to study their invariance properties under the

typical variations of range data. In computer vision, a series

of data sets for this purpose have been introduced in [9].

As there is no such benchmark available for 2D range data,

we follow this idea and define experiments that contain the

relevant transformations of 2D range data. We consider view

point changes, noise, oversampling, and subsampling.

View point changes are important since recognizing places

from different poses is at the basis of object recognition,

global localization, or loop closing. Noise transformations

are relevant for range finders whose noise properties vary

with distance or incidence angle. Over- and subsampling are

important since measurement sparsity is highly view-point

variant causing the same scene to be sampled non-uniformly.

A. Experimental Setup

The proposed detectors and descriptors are evaluated on

three data sets: fr-079, intel, and mit-csail. All log files are

freely available from the online Radish repository and have

been used for testing and benchmarking localization and

SLAM approaches. As ground truth, the data are corrected
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using a state-of-the-art SLAM algorithm [19] so as to register

all laser scans into one global reference frame. The approach

produces maps with a typical accuracy of several cm, rarely

exceeding an error of 10 cm.

We then pick randomly 60 reference locations from all

maps, 20 from each data set, and apply four transformations

with increasing levels of variation on them (see also Fig. 4).

For view point changes, we search all map locations whose

scan has a certain overlap percentage with the reference scan.

The percentage is varied from 50% to 90%. For the noise

transformations, Gaussian noise with standard deviations

between σ = 0 to 0.5m is added in radial direction. For

subsampling, the transformed scans are obtained by skipping

each 2nd, 3rd and 4th reading of the reference scan, and for

oversampling, one, two and three points are inserted using

a linear interpolation in polar coordinates. We finally obtain

several transformed scans ST1
,ST2

, ...,STp for each reference

scan SR on which compare the detectors and descriptors

More details on this experimental setup can also be found

in the accompanying technical report [20].

1) Detector Performance: To quantify the stability of a

detector, we use the repeatability measure introduced by

Mikolajczyk et al. [8] and adapt it to 2D range data: the re-

peatability score of a pair of scans SR, ST is the ratio between

the number of interest point to interest point correspondences

and the total number of interest points in SR that are also in

ST . Two interest points indexed i, j are said to correspond

if the overlap error of their support regions R in Cartesian

space is sufficiently small, i.e.

1−
Ri ∩Rj

Ri ∪Rj

< εo (18)

where εo is an error threshold.

With the shape of an interest point defined as the set of

points in its support region, the actual presence of an interest

point in both scans is checked by the modified Hausdorff

distance between the two shapes,

H(Ri,Rj) =
1

N′ ∑
p ∈ Ri

min
q ∈ Rj

‖p−q‖ (19)

where N′ is the number of points in Ri.

A perfect detector will have a repeatability score of 1

for any possible transformation. However, in practice, this

value is hardly obtained as structures in the environment

can be hidden due to noise, extreme subsampling, view

point changes, or dynamic objects. The theoretically perfect

detector assumes every scan point to be an interesting point.

This detector, however, is not desirable since the detected

points are not distinctive and thus difficult to match.

2) Descriptor Performance: To evaluate the descriptor

performances, we use a criterion similar to the one proposed

in [9] based on the precision-recall curve. Recall is the

number of correctly matched interest points with respect to

the total number of corresponding interest points between

two scans. Precision quantifies the number of correct matches

relative to the total number of potential matches.

Fig. 5. Example FLIRT detection result in indoor (mit-csail, left) and
outdoor (fr-clinicum, right) data. The circles show the interest points and
their support region (the actual descriptors are not shown).

To obtain a matching pair, we compare each descriptor

in SR with each descriptor in ST . We use the symmetric

χ2 distance between the descriptor histograms as a distance

function. Two interest points are said to match when their

distance is below a threshold. This threshold is varied in

order to capture different values for precision and recall. To

check if a match actually exists, we use the overlap error

defined in Eq. (18).

A perfect descriptor would give a recall of 1 for every

precision value. In practice, recall increases when precision

decreases, since to find a correct match, many false matches

have to be accepted. This is because unique features do

not always exist, especially in indoor environments with

symmetries, that is, similar or identical structures in different

places (such as corners, columns, or doors).

B. Detector Comparison

In the evaluation of the detector approaches, the repeata-

bility score in Eq. (18) is compared to a maximal error of

εo = 0.6. We further assume that an interest point is present

in a scan if the modified Hausdorff distance is less than

0.1. We used 5 scales for the detectors with increasing scale

t = t0 ·(ti)
s, where t0 is equal to 0.2 for the curvature detector

and to 1.6 for the others. The interscale value ti is set to 1.4

and s ∈ {0,1,2,3,4} is the current scale. These parameters

led to the best results in the benchmarking experiments.

Fig. 6 shows the repeatability results for the different trans-

forms. The curvature-based detector outperforms the range-

based and the two normal-based detectors in all situations.

The only exception is for higher noise levels, where the range

based detector shows a better behavior. This result, however,

is only obtained when adding Gaussian noise with a standard

deviation of more than 0.25 meters, a value far beyond the

specifications of most laser scanners. The reason why the

curvature-based detector is more invariant to different levels

of subsampling and oversampling is due to the fact that it

operates in geodesic coordinates and not on the raw range

signal.

C. Descriptor Comparison

The descriptors are evaluated with 12 bins for the angle

discretization and 4 bins for the distance discretization (see

also Fig 3). The descriptor size is set to 0.5 m.

In Fig. 7 the precision-recall graphs are plotted for the

different transforms. The β -grid descriptor performs slightly
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Fig. 6. Repeatability measures for different view point (top left), noise
(top right), over- (bottom left) and subsampling levels (bottom right).
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Fig. 7. Results of the matching experiments. The plots show precision vs.
recall for the view point (top left), noise (top right), over- (bottom left) and
subsampling transformations (bottom right).

better than the shape context-based descriptor, while the

performances are not that different. One of the reasons for

this result is that the β -grid descriptor is able to encode

free-space information to discriminate a convex between a

concave structure of the same shape.

Interestingly, compared with the corresponding plots of

detectors and descriptors for image data [9], [8], the results

have both, similar trends and similar values. We believe this

outcome to be encouraging, given the success of local image

features in computer vision.

In the light of the previous results, we finally choose

FLIRT to be the combination of the curvature-based detector

and the β -grid descriptor since this detector-descriptor pair

shows the best performance across all other combinations.

D. Data Association with RANSAC

A key problem in localization and SLAM is global data

association where the robot pose is sought given a single

observation and a map. This is a highly relevant problem,

e.g. for loop closing in SLAM where the robot has to

decide if and where the currently observed place has already

been visited. We choose four log files, three from indoor

(fr-079, intel, mit-csail) and one from outdoor (fr-clinic)

environments and process them with the SLAM approach

in [19] to obtain a ground truth estimate.

For all data sets, we carry out the following: for each

scan in the log file, the scan is first removed from the

map to exclude the trivial self-match. Then, the scan is

compared to all other scans using a standard RANSAC

algorithm. To this end, we compute the correspondence set

by matching the descriptors using the symmetric χ2 distance

and a nearest neighbour strategy with a threshold of 0.4. The

correspondence set is the input to RANSAC that is applied

Data set Size [m] Scans N̄IP pGL pLC tsm tss

fr079 (in) 50×20 1464 27 .98 .98 0.66s 450µs

intel (in) 50×40 2672 18 .98 .98 0.52s 200µs

csail (in) 80×60 1051 23 .97 .97 0.33s 320µs

clinic (out) 550×300 1776 34 .79 .53 1.15s 650µs

TABLE I

SUMMARY OF THE RANSAC EXPERIMENT.

with an inlier probability of 0.5. If the resulting number

of inlier correspondences is above a threshold, Nmin
I , the

solution is considered a candidate match and inserted in the

solution set. For each candidate match, we then compute the

robot pose in a least-squares sense. If the distance between

this pose and the ground truth pose is within 0.5 meter and

10 degree we consider it a correct match (see Fig. 1 for an

example). Notice that matching a scan against a map scales

linearly with the map size.

Fig. 8 contains the resulting precision-recall values. The

top row of the figure shows the precision, the bottom row

shows the recall, both against different values for Nmin
I and

two strategies: considering the match in the solution set

with the highest number of inliers (corresp) or with the

lowest RANSAC error (residual). The third curve (closest)

represent the (theoretically) optimal strategy to choose the

closest solution to the ground truth that passed Nmin
I . The

curve demonstrates that a correct match is in the solution set

although it is not the one with the minimum error.

As can be seen, the approach has both high precision and

high recall values, even at small numbers of inliers. Put into

words, FLIRT features enable a robot to globally self-localize

from a single scan with a success probability of at least

98% within 50 cm accuracy and hundreds of milliseconds

execution time. Alternatively, the figures show that, with

a confidence of 0.95, FLIRT features are able to correctly

identify a potential loop closure event with 98% of the scans.

Table I summarizes the RANSAC results for all four data

sets. The columns are environment size in meters, number

of scans in the map, the average number of interest points

per scan detected (N̄IP), the probability of correct global

localization from a single scan (pGL), the probability of

correct loop closure from a single scan given a precision

of 0.95 (pLC), the total time for a single scan-to-map match

(tsm) and the average time for a scan-to-scan match (tss).

In the outdoor environment of our experiment these proba-

bility are still at 79% for global localization and 53% for loop

closure. This behaviour is mainly caused by the sparseness

of the data that have been collected only every meter (for

memory reasons) and by the lower map accuracy in the

outdoor case. The numbers mean that, on average, we are

still able to self-localize the robot every 1.27 scan and close

a loop every second scan. Note also that all experiments have

been conducted using the same set of parameters.

V. CONCLUSIONS

In this paper we addressed the problem of multi-scale

interest points for 2D range data. Based on large-scale data

sets for robot navigation, we proposed a set of benchmark

experiments as testbed for the comparison of detectors and
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