
the task of place recognition in a graphical, submap-based

SLAM application. While interesting, the main difference

to our approach, is that with a descriptor support region of

9× 9m and being defined on submaps (collection of 20-30

scans spaced 1−2mapart), their approach is a submap charac-

terization technique rather than a local interest point operator.

While this property was not a limitation for obtaining the

good results presented in [16], we are interested in designing

a general-purpose multi-scale keypoint for 2D range data that

retains the important concept of locality which was key to the

impact of interest points in computer vision. FLIRT features

have been designed in this spirit: they are defined locally

(in support regions of typically 0.5m radius) and on a single

scan.

The reasons why 2D range data are different from image

data and 3D point clouds are manifold. As a naive approach,

one could apply the techniques from computer vision to

range data, replacing the image intensity values with the

range signal. While this approach leads to some results, it is

not able to deal with many interesting structures since range

variations around such structures can be weak (corners are an

example). This is because the nature of range data is different

from the nature of image data in that range data represent

a manifold in a higher-dimensional space. In the case of

3D range data, this manifold is a surface in 3D, for 2D

data it is a curve in Cartesian space. Further, for range data,

measurement sparsity is highly non-uniform and view-point

variant, partly due to the low angular resolution of range

finders compared to cameras. Finally, range data can be seen

to lie in between image data and 3D point clouds as they are

defined over an ordered lattice (the raw data space) but also

define a point cloud in Cartesian space. These differences

motivate a specifically derived interest point transform for

2D range data.

Accordingly, we propose a novel set of benchmark ex-

periments based on commonly used large-scale robot nav-

igation data sets to define an experimental testbed for the

comparison of detectors and descriptors for 2D range data.

We then evaluate a number of different detectors and de-

scriptor approaches to eventually propose FLIRT (Fast Laser

Interest Region Transform) as the most appropriate detector-

descriptor combination. Finally, we show how FLIRT can

be used in conjunction with RANSAC to address the loop

closing and global localization problem in SLAM.

The paper is structured as follows. Sections II and III

describe the different detectors and descriptors, respectively,

used in the comparison. The experiments are described in

Section IV. Finally, Section V concludes the paper.

II. DETECTORS

In this section we present four multi-scale detector ap-

proaches that are compared in this paper. Section II-A

presents a detector based on the raw range signal, while

Section II-B describes two detectors based on a normal

approximation of the range data. Section II-C introduces a

curvature based detector derived from Unnikrishnan et al.
[13]. These detectors look for interesting points on different

scales according to the discrete version of the scale space

theory [17].

The scale-space theory is a framework for multi-scale

signal representations to handle structures in the signal

that occur at different resolutions. The original signal, s(x)
is represented by a family of smoothed signals S(x; t),

parametrized by t, the size of the smoothing kernel used

for suppressing fine scale structures. Formally, we have

S(x; t) = (Kt ∗s)(x) (1)

where Kt is the smoothing kernel. In general, this kernel

must not introduce new feature that do not correspond to

simplification of previous features at finer scales. A typical

choice in computer vision is the Gaussian kernel which has

been proved to satisfy this property in the continuous case.

However, Lindeberg [17] showed that in the discrete case,

the filter has the form

Kt (x) = e−t Ix(t) (2)

where Ix are the modified Bessel functions of integer order.

Loosely speaking, the kernel in Eq. (2) is a discrete equiv-

alent of the Gaussian with t corresponding to the standard

deviation.

Interest points can then be detected by considering lo-

cal maxima of differential invariants computed at different

scales. Typical invariants are the gradient magnitude for

edge detectors and the Laplacian or the determinant of the

Hessian matrix for blob detectors. With 1D data, there are

no invariants for ridge and corner detectors as they are only

defined for higher-dimensional signals such as image data.

Note that the scale space theory also defines a way to

make image representations invariant to scale by performing

automatic scale selection. The selection is based on local

maxima over scales of normalized derivatives. In range data,

however, there is no need of automatic scale selection or

scale invariance, since the scale of features can directly

be obtained from the distance information and represents

discriminative information for matching.

A. Range-BasedDetector

The first detector finds interest points in scale-space with

a blob detector applied on the raw range information in the

laser scan. This choice is inspired by the SIFT approach that

uses a blob detector on the raw image data [1].

We construct the scale space using the discrete smoothing

operator defined in Eq. (2) with different values for the scale

t. For each t, interest points are detected by extracting the

local maxima and local minima of the Laplacian of the

signal. For one-dimensional signals the Laplacian operator

is equivalent to the determinant of the Hessian and both

are equal to the second derivative of the signal itself. This

derivative is computed by convolving the signal with the

discrete second derivative operator

∇2S(x; t) = (D2 ∗S)(x; t) (3)

(D2 ∗S)(x; t) = S(x−1; t)−2S(x; t) + S(x+ 1; t) (4)

Interest points are then found by detecting peaks in Eq. (3).
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