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Abstract—People detection is a key issue for robots
and intelligent systems sharing a space with people.
Previous works have used cameras and 2D or 3D range
finders for this task. In this paper, we present a novel
people detection approach for RGB-D data. We take
inspiration from the Histogram of Oriented Gradients
(HOG) detector to design a robust method to detect
people in dense depth data, called Histogram of Ori-
ented Depths (HOD). HOD locally encodes the direc-
tion of depth changes and relies on an depth-informed
scale-space search that leads to a 3-fold acceleration
of the detection process. We then propose Combo-
HOD, a RGB-D detector that probabilistically com-
bines HOD and HOG. The experiments include a
comprehensive comparison with several alternative
detection approaches including visual HOG, several
variants of HOD, a geometric person detector for 3D
point clouds, and an Haar-based AdaBoost detector.
With an equal error rate of 85% in a range up to 8m,
the results demonstrate the robustness of HOD and
Combo-HOD on a real-world data set collected with
a Kinect sensor in a populated indoor environment.

I. Introduction

People detection is an important and fundamental
component for many robots, interactive systems and
intelligent vehicles. Popular sensors for this task are
cameras and range finders. While both sensing modalities
have advantages and drawbacks, their distinction may
become obsolete with the availability of affordable and
increasingly reliable RGB-D sensors that provide both
image and range data.

Many researchers in robotics have addressed the issue
of detecting people in range data. Early works used 2D
range data for this task [1], [2]. People detection in 3D
range data is a rather new problem with little related
work. Navarro et al. [3] collapse the 3D scan into a virtual
2D slice to find salient vertical objects above ground and
classify a person by a set of SVM classified features.
Bajracharya et al. [4] detect people in point clouds
from stereo vision by processing vertical objects and
considering a set of geometrical and statistical features of
the cloud based on a fixed pedestrian model. Unlike these
works that require a ground plane assumption, Spinello
et al. [5] overcome this limitation via a voting approach
of classified parts and a top-down verification procedure
that learns an optimal set of features in a boosted volume
tessellation.

In computer vision, the problem of detecting humans
from single images has been extensively studied. Recent
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Fig. 1. Detected people in RGB-D data from dense depth data
(right) and color image data (left). The method neither relies on
background learning nor on a ground plane assumption.

works include [6], [7], [8], [9], [10] that either use part-
based voting or window scrolling. In the former approach,
body parts independently vote for the presence of a
person, in the latter a fixed-size detection window is
scrolled over different scale space positions of the image
to classify the area under the window. Other works
address the problem of multi-modal people detection: [11]
proposes a trainable 2D range data and camera system,
[12] uses a stereo system to combine image data, disparity
maps and optical flow, and [13] uses intensity images and
a low-resolution time-of-flight camera.

The contributions of this paper to the field of people
detection are as follows:
• We develop a robust dense depth person detection

called Histogram of Oriented Depths (HOD) that
takes inspiration from the method of Histogram of
Oriented Gradients (HOG) and from the peculiar
depth characteristics of the Kinect RGB-D sensor.

• We perform an informed scale-space search for HOD
based on a trained scale-to-depth regression and a
novel usage of integral images [14].

• We propose Combo-HOD, a novel principled fusion
approach for detecting people in RGB-D data.

• The experiments include a comprehensive compari-
son with several alternative methods including vi-
sual HOG, several variants of HOD, a geometric
person detector for 3D point clouds [5], and a Haar-
Based AdaBoost detector [15].

Note that the method neither relies on background learn-
ing nor on a ground plane assumption.

The paper is structured as follows: the Kinect sensor
characteristics are discussed in the next section followed
by Section III that presents the HOD detector for dense
depth-data and Combo-HOD for detecting people in
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Fig. 2. Kinect depth characteristics. The blue line is the function
that relates the byte values of the range image to metric depth, the
red line is the sensor’s minimal measurable depth. The dark green
area indicates the adequate play space recommended in the Kinect
User Manual, the yellow area is the range considered in this paper
for detecting people. Notice that we address the problem of people
detection at nearly 4× the suggested working range, where depth
resolution is becoming increasingly coarser.

RGB-D data. Section IV describes the data sets, the
performance metrics and the comparative experiments.
Section V concludes the paper.

II. Kinect Sensor Characteristics

In this section we analyze and discuss the charac-
teristics of the Microsoft Kinect RGB-D sensor used
in this paper. The sensor consists in an infrared (IR)
camera, an IR projector, and a standard color camera.
To measure depth, the sensor follows the principle of
structured IR light [16]. The depth image has a 640×480
pixel resolution at 11 bits per pixel. Interestingly, not
all bits are used for encoding depth: out-of-range values
(e.g. below minimum range) are marked with the value
of Vmax = 1084 while the minimum range has been
experimentally determined to be Vmin = 290. Thus,
only 794 values (10 bits) are used for encoding depth
information in each pixel.

The relation between raw depth values v and metric
depth in meters d has been experimentally determined
to be [17]:

d =
8 ·B · Fx

(Vmax − v)
(1)

where B = 0.075 m corresponds to the distance between
the IR projector and the IR camera (the baseline),
and Fx is the focal length of the IR camera in the
horizontal direction. Negative values of d are discarded.
The function 1 is a hyperbolic relationship similar to how
depth is determined from point-to-point correspondences
in stereo camera systems. Figure 2 shows the relationship
and illustrates the adequate play space as the space
in which the sensor operates reliably specified by the
manufacturer [18]. The space is limited at the maximal
distance of 2 m− 2.5 m from the sensor.

In this paper we detect people at 0m− 8 m distance,
a range that is nearly four times larger than the speci-
fication. What makes this task challenging is the loss in
depth resolution. 86.9% of the depth values are used to
encode the interval between 0 m and 2.5 m, leaving just
140 values for describing the remaining 2.5 m−8 m range.
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Fig. 3. Left: Effects of hyperbolic resolution loss. Side view of two
example persons at different ranges from the sensor. Close subjects
are accurately described in high detail. Farther away, quantization
is becoming increasingly dominant and heavily compromises the
shape information on people. Geometric approaches to people
detection will perform poorly in such data. Right: Example frame
to illustrate that IR-absorbing surfaces at large distances lead to
blobs of missing depth data (upper body of leftmost subject, white
means missing data).

This effect, that follows from the hyperbolic character of
Eq. 1, is illustrated in Fig. 3 by the point cloud of two
persons at two different distances. While the shape of the
person in the foreground at around 2 m is highly detailed,
the subject in the background is poorly described with
few points at a very coarse range resolution. This makes
that the geometrical information content of the 3D data
is strongly dependent on range and highly compromised
for large distances from the sensor.

Another effect, especially at large distances, is a strong
sensitivity on the surface material. Strongly IR-absorbing
surfaces cause the projected pattern to be reflected with
very low signal strength leading to blobs of missing depth
in the image. This effect is shown in Fig. 3, right.

III. Detecting People in RGB-D Data

In this section we introduce the proposed detectors.
We first give a summary of the HOG detector for image
data. Then we introduce HOD, a novel method for dense
depth data that we derive from HOG, and finally present
Combo-HOD, that fuses both sensory cues.

A. HOG: Histograms of Oriented Gradients

Histograms of Oriented Gradients (HOG) introduced
by Dalal and Triggs [6] is currently one of the most
performant and widely used methods for visual people
detection [10], [9]. The method considers a fixed-size
detection window which is densely subdivided into an
uniform grid of cells. For each cell, the gradient orien-
tations over the pixels are computed and collected in
a 1D histogram. The intuition is that local appearance
and shape can be characterized by a distribution of local
gradients without the precise knowledge of their position
in the cell. Groups of adjectent cells, called blocks, are
used to locally normalize the contrast. The descriptor,
built by concatenating all block histograms, is then taken
for training a linear Support Vector Machine (SVM). For
detecting people, the detection window is scrolled over
the image at several scales. For each position and scale,
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Fig. 4. Quantized regression curve that relates metric depth to
the scale of the detection window. The curve is saturated at the
maximum scale of 20, to avoid extremely large detection windows.

the HOG descriptors are computed and classified with
the learned SVM. For more details, see [6].

B. HOD: Histograms of Oriented Depths

Based on the idea of HOG, we introduce Histograms
of Oriented Depths (HOD) as a novel person detector for
dense depth data.

1) Operation Principle: HOD follows the same pro-
cedure than HOG for the depth image. It considers
a subdivision of a fixed window into cells, computes
descriptors for each cell, and collects the oriented depth
gradients into 1D histograms. Four cells also form a block
to collect and normalize the histograms to L2-Hys [6]
unit length and to achieve a high level of robustness with
respect to depth noise. The intuition is that an array of
local depth changes can robustly characterize local 3D
shape and appearance. The resulting HOD features are
used for training a soft linear SVM with the same two-
stage training method proposed in [6].

2) Depth Image Preprocessing: As discussed in Sec. II,
the raw depth image consists of values that very unevenly
encode the true metric depth. For far away objects,
a difference of one depth value can correspond to a
jump in range of 15 cm. This is of particular importance
for the HOG/HOD framework since it is known that
silhouette blocks at the contour of objects receive very
strong weights in this approach. Specifically, these are
the blocks that correspond to the dimensions of the SVM
hyperplane with the highest positive weights. Therefore,
we preprocess the raw range image with Eq. 1 to en-
hance the foreground-background separation. For numer-
ical stability in the gradient computation, we further
multiply the resulting metric depth values by M/Dmax

with M = 100 being a constant gain and Dmax = 20 the
maximum considered range in meters. This preprocessing
step resembles in spirit the gamma correction procedure
to enhance contrasts in intensity images. Here we can
take advantage of the knowledge on the sensor to cancel
out the nonlinearity with a physically sound model.

3) Depth-Informed Scale Space Search: Many visual
detection methods such as HOG use scale-space search to
find objects in an image. In the case of HOD, we can use
the depth information to guide this process. The result

will not only be a more efficient but also a more accurate
search with informed scale estimates.

Our idea to improve the search is to create a fast
technique to discriminate compatible scales at each po-
sition in the depth image. As a first step, the average
human height Hm is computed from the training data
set, in which ground position and height of each sample
is accurately annotated. This information is then used to
compute a scale-depth regression as shown in Fig. 4 that
follows

s =
Fy ·Hm

d
· 1
Hw

(2)

where Fy is the vertical focal length of the IR camera,
Hm = 1.74 m is the measured average height of a person
and Hw is the height in meters of the detection window
at scale 1. Note that the left term in Eq. 2 represents
the image projection of a semi-plane of height Hm,
perpendicular to the camera and located at distance d.
To limit memory usage, function 2 is quantized each 1

3
scale. We compute the scale s for each pixel of the depth
image to generate a scale map from which we derive
the list of all used scales S. The list contains only the
scales that are compatible with the presence of people in
the image. This method avoid the consideration of many
scales at a fine resolution which is the case for uninformed
search heuristics such as image pyramids.

Given the list of scales S that is computed once
for each image, we can start the informed scale-space
search. Only search windows whose depth information
corresponds to S are forwarded to the SVM classifier.

The naive way to address this problem is to select
one scale s in the list S and test if the depth values
under the window are compatible with s at each scale-
space position. This would involve scanning the entire
area under the search window at all positions and test if
at least one depth value is compatible with s, a procedure
that is computationally expensive especially at large
scales.

By using integral images [14], we propose a much faster
solution able to test the scale in O(1). Integral images are
a technique to efficiently compute the sum of values in a
rectangular area of a grid. The value at each image point
is the sum of all values above and to the left of the point.
The construction of the integral image itself is a O(N)
procedure, where N depends on the size of the unscaled
original image. The key benefit of integral images is the
computation of an area integral with only 4 subtractions.
Here we extend the concept to integral tensors, multi-
layered integral images with as many layers as scales in
S subject to the quantization of Eq. 2. Each layer in the
integral tensor is a binary image whose non-white pixels
correspond to the layer’s scale. This makes it possible to
very efficiently test if a given search window contains at
least one pixel of a particular scale. The construction of
the integral tensor has to be done only once per image.

In the detection phase, a scale s from S is selected.
Then, for each search window position, the test is carried



out as an area integral over the search window in the
layer of the integral tensor that corresponds to s. If the
result is bigger than zero there is at least one compatible
depth pixel under the window and HOD is computed.
Otherwise the detection window is not considered and
the process is continued.

C. Combo-HOD: RGB-D people detector
The two detection approaches described so far consider

either image or range data. To take advantage of the
richness of RGB-D data, we now propose Combo-HOD,
a novel detector that combines the sensory cues. The
combination appears promising: depth data are robust
with respect to illumination changes but sensitive to low-
signal strength returns and suffer from a limited depth
resolution. Image data are rich in color and texture, have
a high angular resolution but break down quickly under
non-ideal illumination.

Combo-HOD is trained separately by training a HOG
detector on image data and a HOD detector on depth
data. The method fully relies on the informed scale-space
search described above: each time a detection window
has a compatible scale, HOD descriptors are computed
in depth image and HOG descriptors are calculated in the
color image using the same window. When no depth data
are available, the detector gracefully degrades to the reg-
ular HOG detector. A calibration procedure is required
to determine the extrinsic parameters that provide the
proper correspondence between the two images.

When the HOG and HOD descriptors are classified,
the information is ready to be fused. The decision func-
tion of a learned SVM is given by the sign of the dot
product of the HOD/HOG descriptor with the SVM
hyperplane plus the SVM bias. In order to fuse these
two pieces of information, we follow the approach by
Platt et al. [19] and fit a sigmoid function to each SVM
output that maps the values onto a probability axis. The
probabilities from the HOD detector pD and the HOG
detector pG are then fused by an information filter

p = pD + k (pG − pD) k =
σ2

D

σ2
D + σ2

G

, (3)

where p is the resulting probability of detecting a
person, σ2

D is set to the ratio of the number of false
negatives of the HOD detector divided by the number
false negatives of the HOG detector at the equal error
rate point of the validation set, and σ2

G = 1− σ2
D.

IV. Experiments

To evaluate and compare the different detector ap-
proaches, we collected a large-scale indoor data set with
unscripted behavior of people. The data set has been
taken in the lobby of a large university canteen at lunch
time. An additional data set has been collected in a vi-
sually different university building which is only used for
generating background samples. This is to avoid detector
bias towards the visual appearance of the canteen lobby,
especially since we acquired the data from a stationary

sensor. The data set has been manually annotated to
include the bounding box in 2D depth image space and
the visibility status of subjects (fully visible/partially
occluded). A total of 1648 instances of people in 1088
frames have been labeled. The data set are available on
the web page of the authors.

As evaluation metrics, we determine precision-recall
and the equal error rate (EER). Detections are counted
as true positives if the bounding box overlaps with a
manually labeled person by more than 40% to account for
metric inaccuracies in the annotation and the detection.
Adopting the no-reward-no-penalty policy from [9], we
do not count true positives or false positives when a
detection matches an annotation of a partially occluded
person.

The training set for all detectors is composed of 1030
depth data samples of people (that are also mirrored on
the horizontal axis) and 5000 negative samples that have
been randomly selected from the background data set.

A. Results
We compare the novel HOD detector with other depth-

based techniques, visual techniques and the novel multi-
modal RGB-D detection method Combo-HOD.

Given the importance of depth quantization in Kinect
data, we evaluate two HOD variants: HOD11 that con-
siders the full 11 bit range of depths available from the
sensor and HOD8 which uses a downscaled 8 bit range.
We further compare the HOD detector with other prepro-
cessing techniques than the one described in Sec. III-B.
We consider typical techniques from computer vision for
contrast enhancement or illumination equalization that
include the square root operator, the logarithm operator,
and no preprocessing at all.

The experiments in Fig. 5, left, clearly show that
HOD11 outperforms HOD8 over the entire precision-
recall range: 3 additional bits to encode depth help
to disambiguate people from background. This is also
true for all preprocessing operations on the depth data
(results not shown in Fig. 5). For HOD11, the best
preprocessing technique is the one described in Sec. III-B
which confirms that a theoretically sound technique out-
performs the ad-hoc heuristics. Specifically, the HOD11
has an EER of 83% whereas the best HOD8 variant has
an EER of 75%.

A fundamental question in the context of RGB-D
data is the contribution of the depth information over
purely visual detection techniques. To assess this issue,
we consider the performances of the visual HOG detector
and a visual Haar-based Adaboost detector (HA) as
initially proposed by Viola and Jones [15] that both
detect people in RGB images. As can be seen in Fig. 5
left, both methods underperform with respect to HOD11
and Combo-HOD, with EERs of 73% for HOG and only
13% for HA (not shown in Fig. 5). The main reason for
these modest results is related to illumination issues. The
environment of the data set is not optimally illuminated.
Dark areas leads to blurred images of moving people
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Fig. 5. Left: Precision recall curves for depth-based, image-based, and combined RGBD based detection methods. The most performant
detector is the combined RGB-D detector, Combo-HOD, that fuses HOD and HOG. HOD is evaluated at different depth discretizations,
8bits and 11bits. HOD11 is the best depth-based detection method. Visual-based HOG detector underperforms due to unfavorable light
conditions. BUTD underperforms due to the hyperbolic depth resolution loss of kinect data. Center: Evaluation of BUTD and HOD11
in the Kinect adequate playspace limited to 2.5 m. Both approaches have very similar performance. Right: Numbers of scales tested per
image with the HOD method and an uninformed HOD method (denoted HOD−). Scale-space search is accelerated by a factor of 3.

as the Kinect RGB camera automatically extends the
shutter time to produce brighter images. Background
regions with direct sunlight result in saturated image
areas and bad contrast. These phenomena also contribute
to the failure of the AH method as it uses Haar-wavelets
that are not particularly robust to illumination changes.
The results demonstrate the need for people detection
systems that work in ranges of conditions that are wider
than the ones for purely visual detection approaches and
motivate the usage of depth information for this task.

Of equal importance is the comparison with geometric
approaches in contrast to image-based techniques. We
therefore evaluate the HOD11 method with BUTD [5],
a 3D person detector for sparse 3D data such as point
clouds from a Velodyne sensor. The results are slightly
in favor of HOD11 with an EER of 72% (see Fig. 5, cen-
ter). Note that BUTD still degrades gracefully and can
produce a very high precision of 98% at a decent recall of
53%. However, BUTD is a technique that strongly relies
on shape information and is therefore compromised by
the resolution loss for larger distances from the sensor.
Specifically, range image segmentation of BUTD does not
work well with coarsely quantized depth data. However,
at close range where depth resolution is nearly constant,
both detectors perform similarly at an EER of around
86% (see Fig. 5, center). This result demonstrates the
appropriateness of shape-based approaches given data of
some quality.

The computational performance of the HOD detector
is also evaluated and shown in Fig. 5, top. We compare
the number of scales that HOD processes per image
using the informed scale-space search versus the regular
uninformed HOD method (denoted as HOD−). HOD−

uses a pyramidal search with a 5% scale increment
regardless the image content. This is unlike HOD where
scale is a function of depth and changes for each new
depth image. We state a nearly three-fold decrease in the
number of scales that are searched over all images in the
entire data set. This leads to an approximate three-fold

acceleration in processing time per image between HOD
and HOD−, see Fig. 5, right. The algorithm has been
fully implemented on GPUs. The implementation is able
to process the RGB-D Kinect data stream (2×640×480
pixels at 30 fps) in real-time on a Nvida GTX480 card.

Finally, in comparison to all other techniques, the pro-
posed Combo-HOD detector is the winner. Combo-HOD
achieves the highest EER of 85% in Fig. 5. This means
that the combined use of depth and image information
that RGB-D data provide widen the range of conditions
under which people detection works reliably. The multi-
modality helps to detect people in situations that single-
cue detectors cannot deal with.

Qualitative results from the Combo-HOD detector are
shown in Figure 6. The figure illustrates several persons
detected at different ranges with varying partial occlu-
sions and in different visual clutter conditions.

V. Conclusions

In this paper we introduced Combo-HOD, a novel
approach to the problem of detecting people in RGB-
D data. We described key insights on the characteristics
of Kinect data, the sensor used in the experiments, that
guided us in the development of the proposed methods.
HOD, that stands for Histogram of Oriented Depths,
locally encodes the direction of depth changes and relies
on an depth-informed scale-space search that leads to
a 3-fold acceleration of the detection process. We then
combine the method with visual HOG and propose the
Combo-HOD detector that relies on depth and RGB data
as sensory cues. The result is a person detector that
achieves an Equal Error Rate of 85% in a range of nearly
four times larger than the operation space specified by
the sensor manufacturer. We have further conducted
comparative experiments to analyze the contribution
of the depth data over purely visual methods and the
performance of shape-based 3D methods. Combo-HOD
outperforms all other detection approaches while running
at 30 fps on a graphics card implementation.



Fig. 6. Qualitative results of people detection in RGB-D data with the Combo-HOD detector. People are detected at several ranges at
varying partial occlusions and in different visual and depth clutter. False negatives occur when in both sensor modalities the data are
challenging, false positives are found when visual and depth clutter occur simultaneously. In the third column, the detector is able to find
a person even though no depth data are available. Note that the method neither relies on background learning nor on a ground plane
assumptions.
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