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Abstract—People tracking is a key component for
robots that are deployed in populated environments.
Previous works have used cameras and 2D and 3D
range finders for this task. In this paper, we present
a 3D people detection and tracking approach using
RGB-D data. We combine a novel multi-cue person
detector for RGB-D data with an on-line detector that
learns individual target models. The two detectors
are integrated into a decisional framework with a
multi-hypothesis tracker that controls on-line learning
through a track interpretation feedback. For on-line
learning, we take a boosting approach using three
types of RGB-D features and a confidence maximiza-
tion search in 3D space. The approach is general
in that it neither relies on background learning nor
a ground plane assumption. For the evaluation, we
collect data in a populated indoor environment using
a setup of three Microsoft Kinect sensors with a joint
field of view. The results demonstrate reliable 3D
tracking of people in RGB-D data and show how the
framework is able to avoid drift of the on-line detector
and increase the overall tracking performance.

I. Introduction

People detection and tracking is an important and
fundamental component for many robots, interactive
systems and intelligent vehicles. Popular sensors for this
task are cameras and range finders. While both sensing
modalities have advantages and drawbacks, their dis-
tinction may become obsolete with the availability of
affordable and increasingly reliable RGB-D sensors that
provide both image and range data.

Many researchers in robotics have addressed the issue
of detection and tracking people in range data. Early
works were based on 2D data in which people have been
detected using ad-hoc classifiers that find moving local
minima in the scan [1], [2]. A learning approach has been
taken by Arras et al. [3], where a classifier for 2D point
clouds has been trained by boosting a set of geometric
and statistical features.

People detection and tracking in 3D range data is a
rather new problem with little related work. Navarro et
al. [4] collapse the 3D scan into a virtual 2D slice to
find salient vertical objects above ground and classify a
person by a set of SVM classified features. Bajracharya
et al. [5] detect people in point clouds from stereo vision
by processing vertical objects and considering a set of
geometrical and statistical features of the cloud based on
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Fig. 1. People tracking in RGB-D data. The top pictures show the
three color and depth images, below the 3D point cloud. The data
was collected in the lobby of a large university canteen at lunch
time with a setup joining the views of three Kinect sensors. The
colored disks and dots in the point cloud show the positions and
trajectories of five tracked persons.

a fixed pedestrian model. Unlike these works that require
a ground plane assumption, Spinello et al. [6] overcome
this limitation via a voting approach of classified parts
and a top-down verification procedure that learns an
optimal feature set and volume tessellation.

In the computer vision literature, the problem of de-
tecting, tracking and modeling humans has been exten-
sively studied [7], [8], [9], [10]. A major difference to
range-based systems is that the richness of image data
makes is straightforward to learn target appearance mod-
els. For this reason, visual tracking systems can achieve
good results with methods as simple as independent
particle filters with nearest-neighbor data association
[11]. Dense depth data from stereo are used by Beymer
and Konolige [12] to support foreground segmentation in
an otherwise vision-based people detection and tracking
system. They use a set of binary person templates to
detect people in images and demonstrate multi-person
tracking with learned appearance-based target models.
The work of [13], [14] detect people in intensity images
and track them in 3D. In [15] a stereo system for combin-
ing intensity images, stereo disparity maps, and optical
flow is used to detect people. Multi-modal detection and
tracking of people is performed in [16] where a trainable
2D range data and camera system is presented.

This paper advances the state of the art in the fol-
lowing aspects. First, we address the novel problem of



detecting and tracking people in RGB-D data. We com-
bine an a priori person detector with an on-line learned
person detector and a multi-hypothesis tracker (MHT),
able to estimate the motion state of multiple people in
3D. Learning individual target models is a new aspect
to range data-based object tracking that usually deals
with targets of identical appearance. To this end, we
adapt the on-line learning method from Grabner et al.
[17] to RGB-D data. We present a novel framework to
integrate the two detectors and the tracker that involves
a track interpretation feedback to control learning. This
enables the system to bridge gaps of misdetections of
the a priori detector and handle target occlusions while
avoiding drift of the on-line detector. Finally, we give
quantitative results using the CLEAR MOT performance
metric. Unlike the above mentioned works that integrate
multiple sensory modalities, we consider image and range
data as equally important cues for detection, tracking,
and target model adaptation. We further present a novel
integration framework to effectively combine a tracker
with on-line learned target classifiers.

The paper is structured as follows: the a priori peo-
ple detector is briefly summarized in the next section
followed by the description of our on-line AdaBoost
learning approach for target appearances in RGB-D data
in Section III. The integration of this learning procedure
into the tracking system is described in Section IV.
Section V describes the experiments and gives the results.
Section VI concludes the paper.

II. Detection of People in 3D Range Data

In this section we briefly summarize the a priori
people detector used in this paper. We rely on a novel
RGB-D person detector called Combo-HOD (Combined
Histograms of Oriented Depths and Gradients). The
method takes inspiration from Histogram of Oriented
Gradients (HOG) introduced by Dalal and Triggs [7] and
combines the HOG detector in the color image with a
novel approach in the depth image called Histograms of
Oriented Depths (HOD).

Since RGB-D data contains both color and depth
information, the Combo-HOD detector combines the two
sensory cues. HOD descriptors are computed in the
depth image and HOG descriptors are computed in the
color image. They are fused on the level of detections
via a weighted mean of the probabilities obtained by
a sigmoid fitted to the SVM outputs. HOD includes
a depth-informed scale-space search in which the used
scales in an image are first collected and then tested
for compatibility with the respective depth. This test is
made particularly efficient by the use of integral tensors,
an extension of integral images over several scales. This
strategy dramatically reduces the number of descriptors
computed in the image at improved detection rates. For
more details, the reader is referred to [18].

The output of the detector in each step are the posi-
tions and size of all targets in 3D space and the center

and size of the bounding boxes in the depth images. They
are the observations zi(t) that constitute the set of mk

observations Z(t) at time index t.

III. On-line Boosting

The detector described in the previous section learns a
generic person model from a priori labeled data. In this
section, we describe the use of on-line boosting to learn
target appearance models in RGB-D data, later used to
guide data association in the tracking system.

Boosting is a widely used technique to improve the
accuracy of learning algorithms. Given training samples
x with labels y, a strong classifier H(x) is computed as
linear combination of a set of weighted hypotheses called
weak classifiers h(x). The discrete AdaBoost algorithm
by Freund and Shapire [19] belongs to the most popular
boosting algorithms. The method trains weak classifiers
from labeled training samples (x, y), initialized with
uniform weights wi associated to each x. Learning is done
in rounds where the weights are updated based on the
mistakes of the previous weak learner. By increasing the
weights of the wrongly classified samples the algorithm
focuses on the difficult examples.

On-line boosting, initially proposed by Oza and Russell
[20], processes each training instance“on arrival”without
the need of storage and reprocessing, and maintains a
current hypothesis that reflect all the training samples
seen so far. The approach has been applied for object
detection while tracking by Grabner et al. [17]. We build
upon the latter to develop our on-line people detector in
RGB-D data.

A. Updating the Weak Classifiers
Unlike the off-line approach to boosting, the on-line

algorithm presents training samples only once and dis-
cards them after training. The weak classifiers have thus
to be updated in an on-line fashion each time a new
training sample is available. As the difficulty of the
samples is not known in advance the computation of
the weight distribution of the samples is a critical issue.
The basic idea of on-line boosting is that the weight of
a sample (called importance λ in this context) can be
estimated by propagating it through a fixed chain of
weak classifiers [20]. If the sample is misclassified, λ is
increased proportional to the error of the weak classifier.
Therefore, the importance has the same effect as the
adapted weight in the off-line approach. The error of
the i-th weak classifiers is estimated from the summed
weights of the correctly (λcorr

i ) and wrongly (λwrong
i )

classified samples,

ei =
λwrong

i

(λwrong
i + λcorr

i )
. (1)

B. On-line-boosting for Feature Selection
For the purpose of learning target models during track-

ing, Grabner et al. [17] propose feature selectors. The
main idea is to apply on-line boosting not directly to



Fig. 2. Bounding boxes of two detected persons in the RGB
and depth images. The ten best features of each on-line detector
are marked with colored rectangles. Haar-like features calculated
on the intensity image are shown in green and Haar-like features
computed on the depth image are marked in red. The Lab color
features calculated on the RGB image are depicted in blue.

the weak classifiers but to the selectors. A selector hsel

selects the best weak classifier from a pool of M weak
learners F with ‘best’ being defined by the lowest error.

With the number of selectors N being a fix parameter,
the following procedure is repeated for all selectors when
a new sample (x, y) arrives: First, all weak classifiers are
updated and the best one, denoted m+, is selected

hsel
n (x) = hweak

m+ (x) (2)

with m+ = arg minm(en,m) and en,m defined like Eq. 1
with subscript n,m for i. Then, the voting weight
αn = 1

2 · ln( 1−en

en
) is computed where en = en,m+ and

the updated importance weight λ is propagated to the
next selector hsel

n+1. Similar to AdaBoost, λ is increased
if hsel

n predicts x correctly and decreased otherwise.
The strong classifier is finally obtained by computing

the confidence as a linear combination of the N selectors
and applying the signum function,

κ(x) =
N∑

n=1

(αn · hsel
n (x)) , H(x) = sign(κ(x)). (3)

Unlike the off-line version, the on-line procedure creates
an always-available strong classifier in a any-time fashion.

In order to increase the diversity of the classifier pool
F and to adapt to appearance changes of the targets,
at the end of each iteration, the worst weak classifier is
replaced by one randomly chosen from F .

C. Features
We take advantage of the richness of RGB-D data

by computing three types of features that correspond
to the weak classifiers: Haar-like features [21] in the
intensity image (converted from the RGB values), Haar-
like features in the depth image, and illumination agnos-
tic Lab color features in the RGB image. Lab features
are computed by summing up the intensity values in
a* (b*) space under the area. The advantage of the
Lab color model is that features in a* or b* space can
compactly and robustly subsume entire RGB histograms.
A total of M features is computed where the initial
number of features is M/3 for all types. Given the above

mentioned adaptation mechanism, their relative numbers
can change to best describe a target dynamically.

The features are computed in rectangular areas sam-
pled with randomized positions and scales in the bound-
ing box associated to each target. This is done once at
initialization and then kept fix over the lifetime of a
target (up to the weak feature that get replaced). The
best ten features of two persons are shown in Fig. 2.

D. On-line Boosting for Tracking
On-line boosting enables a tracker to continuously

update a target model to optimally discriminate it from
the current background. This is a formulation of tracking
as a classification problem [22] which is implemented by
a confidence maximization procedure around the current
tracking region . The region is obtained as the bounding
box of the previous detection. All features within the
region are considered the positively labeled foreground
samples. The negative samples are obtained by sweep-
ing the bounding box over a local neighborhood. The
classifier is then evaluated at each sweep position of this
neighborhood yielding a confidence map whose maximum
is taken as the new position of the tracking region. The
classifier is updated in this region and the process is
continued. The evolution of the confidence values over
time can be seen in Fig. 5.

Unlike [17] where the new region is bootstrapped from
the previous detection, we use the bounding box position
of the a priori detector to recenter the on-line detector.
This strategy avoids a key problem of on-line adaptation
namely drifting of the model to background, clutter, or
other targets.

IV. Integration into the Tracking System

In this section we describe how the on-line detector
is integrated into a Kalman filter based multi-hypothesis
tracking framework (MHT). For reasons of limited space,
we will only discuss the aspects that change in the MHT,
refer to [23], [24] for more details.

In short, the MHT algorithm hypothesizes about the
target states by considering all statistically feasible as-
signments between measurements and tracks and all
possible interpretations of measurements as false alarms
or new track and tracks as matched, occluded or obsolete.
Thereby, the MHT handles the entire life-cycle of tracks
from creation and confirmation to occlusion and deletion.

Formally, let ξ(t) = (xt yt zt ẋt ẏt żt)T be the filtered
state of a track t at time t with position and velocity
information in 3D and Σ its associated 6× 6 covariance.
Let Z(t) = {zi(t)}mt

i=1 be the set of mt observations which
in our case is the set of detected people in RGB-D data.
Observations consist in a 3D position from the a priori
detector zi(t) and a training sample xi(t) from the on-
line detector. The sample xi(t)) is a vector of stacked
features values computed in the rectangular areas within
the current tracking region.

Let Ωl(t) be the l-th hypothesis at time t and Ωt−1
p(l)

the parent hypothesis from which Ωl(t) was derived. Let
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Fig. 3. The decisional framework to integrate both detectors and
the tracking system

further ψj(t) denote a set of assignments which associates
predicted tracks to measurements in Z(t). In each cycle,
the method tries to associate the tracks in the parent
hypotheses of the previous step to the new set Z(t),
producing all possible assignment sets ψ(t) that each give
birth to a child hypothesis that branches off its parent.
This results in an exponentially growing hypothesis tree.
Most practical MHT implementations prune the tree by
Murty’s algorithm able to generate and evaluate the
current k best hypotheses in polynomial time.

A. Joint Likelihood Data Association
The measurement likelihood in the regular MHT

p(zi(t)|ψt
j ,Ω

t−1
p(l)) consists in two terms, one for observa-

tions interpreted as new tracks and false alarms (which
we leave unchanged) and a second one for matched
observations zi(t) that follows the Gaussian likelihood
model centered on the measurement prediction ẑj(t) with
innovation covariance matrix Sij(t), p(zi(t)|ψt

j ,Ω
t−1
p(l)) =

N (zi(t) ; ẑj(t), Sij(t)). This likelihood quantifies how well
an observation matches a predicted measurement based
on position and velocity.

Here, the on-line classifier H adds an appearance
likelihood that expresses how much the observed target’s
appearance matches the learned model. We thus have a
joint likelihood that accounts for both motion state and
appearance. With xi(t) being the feature descriptor of
zi(t), zi(t) = (zi(t),xi(t)), and assuming independence
between the two terms,

p(zi(t)|ψt
j ,Ω

t−1
p(l),H

t−1) = p(zi(t)|ψt
j ,Ω

t−1
p(l)) (4)

· p(xi(t)|Ht−1).

We also model the appearance likelihood to be a Gaus-
sian pdf centered on the maximum confidence of the
strong classifier (which is 1)

p(xi(t) | Ht−1) = N (κ(xi(t)) ; 1, σ2
a), (5)

where σ2
a is the variance of the Gaussian and a smoothing

parameter to trade off the two likelihoods.

B. Feeding Data Association Back to On-line Boosting
In each cycle, the tracker produces assignments of mea-

surements to tracks and interpretations of measurements
as new tracks or false alarms and of track as occluded
or deleted. This information directly serves the on-line

Fig. 4. The setup consisting in three vertically mounted Kinect
sensors offering a joint field of view of 130◦ × 50◦ and supplying
RGB-D data with a resolution of 1440× 640 pixels at 30Hz . They
are mounted at 1.2 m height.

boosting algorithm to create and update the strong
classifiers:

• When an observation znew is declared as a new
target, a new track tnew is initialized and a new
strong classifier Hnew is created at the bounding box
position of the hypothesis of the a priori detector.

• When an existing target ti is associated to an ob-
servation zj(t), the strong classifier Ht

i is updated
using the features xj(t) calculated within the new
bounding box of the a priori detector. The on-
line detector is centered at this new bounding box
position.

• When the MHT declares a track as occluded, there
are two possible reasons: an occlusion or a misdetec-
tion. To cope with both cases, we proceed as follows:
Given the on-line learned model, we search for
targets without valid observations by centering a
3D confidence map around the motion prediction
of the Kalman filter. The map size is proportional
to the uncertainty of the prediction, the confidence
values are calculated using the projections of the
3D positions into image space. This is unlike [17] in
which this search is carried out in image space and
with a fixed-size search window. If a high-confidence
match can be found, we interpret the event as a
misdetection and make the confidence maximum an
observation z∗(t). Otherwise, we interpret the event
as a target occlusion and stop on-line learning of
the corresponding strong classifier until the target
reappears. This strategy also avoids drifting of the
model to background, clutter, or other targets.

Observations z∗(t) from the on-line detector are treated
like regular observations for the MHT.

V. Experiments

To evaluate and compare the different detector ap-
proaches, we collected a large-scale indoor data set with
unscripted behavior of people. The data set has been
taken in the lobby of a large university canteen at lunch
time. The a priori detector has been trained with an addi-
tional background data set collected in another, visually
different university building. This is to avoid detector
bias towards the visual appearance of the canteen lobby,
especially since we acquired the data from a stationary



Fig. 5. Evolution of the confidence of the on-line detector. The
top image shows the confidences over the life cycle of a track.
After initialization the values achieves steady state. Person 2 is
occluded twice between frames 172 to 185 and frames 192 to 199.
Thanks to the feedback from the MHT tracker, the on-line detector
pauses its adaptation. This strategy avoids drifting of the model to
background, clutter, or other targets. When the person reappears,
adaptation is resumed immediately with high confidence.

sensor. The data set has been manually annotated to
include the bounding box in 2D depth image space, the
visibility of subjects (fully visible/partially occluded),
and the data association ground truth of the tracks. A
total of 3021 instances of people in 1133 frames and 31
tracks have been labeled. The data set will be made
available on the laboratory webpage at publication date
of this paper.

The sensory setup for data collection is shown in Fig. 4.
It consists in three vertically mounted Kinect sensors
that jointly extend the field of view to 130◦ × 50◦.
Measures have been taken to calibrate the intrinsics and
extrinsics of the setup and to guarantee synchronized
acquisition of the three images at frame rate.

The parameters of the MHT have been learned from a
training data set over 600 frames. The detection proba-
bility is set to pdet = 0.99 and the termination likelihood
to λdel = 30. The average rates of new tracks and
false alarms are determined to be λnew = 0.001 and
λfal = 0.005, respectively. Further, the maximal number
of hypothesis NHyp is set to 100. The strong classifiers of
the targets are based on 50 selectors which are trained
with 50 weak hypotheses.

To assess the impact of the on-line boosting onto the
tracking performance we run the tracker with the a priori
detector only to obtain a baseline. All following runs are
then compared using the CLEAR MOT metrics [25]. The
metric counts three numbers with respect to the ground
truth that are incremented at each frame: misses (missing
tracks that should exist at a ground truth position, FN),
false positives (tracks that should not exist, FP), and
mismatches (track identifier switches, ID). The latter
value quantifies the ability to deal with occlusion events
that typically occur when tracking people. From these
numbers, two values are determined: MOTP (avg. metric
distance between estimated targets and ground truth)
and MOTA (avg. number of times of a correct tracking
output with respect to the ground truth). We ignore
MOTP as it is based on a metric ground truth of target
positions which is unreliable in our data.

A. Results

First, we analyze the confidence values of the strong
classifier H and the integration framework in different
situations (see Fig. 5). Person 1 traverses the sensor field

Fig. 6. Visualization of the 3D point cloud produced by the three
Kinect sensors including the positions and trajectories of eight of 31
tracks in the data set. The colored disks mark the current Kalman
filter estimates of the target positions, the small dots show their
past trajectories. The tracker maintains full 3D estimates as it can
be seen by the dark blue trajectory of the subject coming down the
stairs.

of view without interference with other targets. After
an initialization phase of nearly ten frames, the on-line
detector has adapted to its appearance and achieves
steady state at a value of around 0.8. Person 2 undergoes
two occlusions. During the occlusions the confidence
values drop immediately, indicating that the target is no
longer visible. As the MHT correctly declares the target
as occluded, adaptation of H is paused and resumed
with high confidences after the person reappears. We
have further investigated the usage statistics of the three
features types of the on-line detector. They are generally
used with similar frequency and importance.

We then compare the on-line boosting approach to the
baseline using the CLEAR MOT metrics. The results
show a clear improvement of all values except for the
number of false positives (see Table I). We manually
inspected the behavior of the tracker and discuss the
insights gained.

The strongest impact of the presented approach is the
reduction of the number of missed targets by 50%. This
improvement is caused by the on-line observations z∗.
When the a priori detector fails to detect an existing
track in several consecutive frames, the best MHT hy-
pothesis will eventually (and wrongly) declare the track
as deleted. When this happens, the miss count (FN)
is increased at each frame until the detector finds the
target again and creates a new track. This is where the
z∗ observations come into play by detecting the target
from the on-line learned model. Given a z∗, the MHT
can match the target and correctly continue the track.

This benefit comes at the expense of a delayed deletion
of tracks that are incorrectly created from wrong false
positives of the a priori detector. In this case, the on-
line detector tries to continue the track with the same
strategy leading to a increase of the number of false
positives (FP) by 19%. We observed that this happens
for recurring false positive detections on static objects on
which the on-line detector can particularly well adapt.

The improvement in the number of id switches (ID) is
achieved by the joint likelihood model that guides data
association in situations of interacting and thus occluding
targets. The fact that this number is not higher is due



FN FP ID MOTA

Baseline 1502 168 42 62%

On-line boosting 751 201 32 78%

Improvement 50% -19% 24% 16%

TABLE I

CLEAR MOT results.

to the unscripted behavior of people in our data set. At
the particular place of data collection, subjects mainly
walked past rather than creating situations that stress
the occlusion handling capability of the tracker.

VI. Conclusions

In this paper we presented a novel 3D people detection
and tracking approach in RGB-D data. We combined
on-line learning of target appearance models using three
types of RGB-D features with multi-hypothesis tracking.
We proposed an decisional framework to integrate the on-
line person detector, an off-line learned a priori detector
and a multi-hypothesis tracker. The framework enables
the tracker to support the on-line classifier in training
only on the correct samples and to guide data association
via a joint motion and appearance likelihood. It also
avoids the key problem of on-line adaptation namely
drifting of models to background, clutter, or other targets
by resetting the detection window at the location of
the a priori detector and pausing adaptation in case of
occlusions. The framework further allows to fill gaps of
false negatives from the a priori detector by observations
of the on-line detector.

The experiments show a clear overall improvement of
the tracking performance, particularly in the number
of missed tracks and also in the number of identifier
switches. They demonstrate that the on-line classifier
contributes to find the correct observations in cases when
the a priori detector fails. This reduces the number of
missed tracks by 50%. Further, the joint data association
likelihood helps to decrease the number of track identifier
switches by 24%. The overall tracking accuracy (MOTA)
is improved by 16%.

Future work will focus on the collection and annota-
tion of more RGB-D data sets containing a variety of
challenging social situations that stress more aspects of
this approach.
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