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Abstract— People in densely populated environments typi-
cally form groups that split and merge. In this paper we track
groups of people so as to reflect this formation process and gain
efficiency in situations where maintaining the state of individual
people would be intractable. We pose the group tracking
problem as a recursive multi-hypothesis model selection prob-
lem in which we hypothesize over both, the partitioning of
tracks into groups (models) and the association of observations
to tracks (assignments). Model hypotheses that include split,
merge, and continuation events are first generated in a data-
driven manner and then validated by means of the assignment
probabilities conditioned on the respective model. Observations
are found by clustering points from a laser range finder given a
background model and associated to existing group tracks using
the minimum average Hausdorff distance. Experiments with
a stationary and a moving platform show that, in populated
environments, tracking groups is clearly more efficient than
tracking people separately. Our system runs in real-time on a
typical desktop computer.

I. INTRODUCTION

The ability of robots to keep track of people in their

surrounding is fundamental for a wide range of applications

including personal and service robots, intelligent cars, or

surveillance. People are social beings and as such they form

groups, interact with each other, merge to larger groups

or separate from groups. Tracking individual people during

these formation processes can be hard due to the high

chance of occlusion and the large extent of data association

ambiguity. This causes the space of possible associations

to become huge and the number of assignment histories to

quickly become intractable. Further, for many applications,

knowledge about groups can be sufficient as the task does

not require to know the state of every person. In such

situations, tracking groups that consist of multiple people is

more efficient and furthermore contains semantic information

about activities of the people.

This paper focuses on group tracking in populated envi-

ronments with the goal to track a large number of people

in real-time using a laser range finder. However, our method

should be applicable to data from other sensors as well.

In most related work on laser-based people tracking, tracks

correspond to individual people [1], [2], [3], [4], [5]. In

Taylor et al. [6] and Arras et al. [7], tracks represent the state

of legs which are fused to people tracks in a later stage. Khan

et al. [8] proposed an MCMC-based tracker that is able to

deal with non-unique assignments, i.e., measurements that

originate from multiple tracks, and multiple measurements
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that originate from the same track. Actual tracking of groups

using laser range data was, to our knowledge, first addressed

by Mucientes et al. [9]. Most research in group tracking was

carried out in the vision community [10], [11], [12]. Gennari

et al. [11] and Bose et al. [12] both address the problem

of target fragmentation (splits) and grouping (merges). They

do not integrate data association decisions over time –

a key property of the Multi-Hypothesis Tracking (MHT)

approach, initially presented by Reid [13] and later extended

by Cox et al. [14]. The approach belongs to the most general

data association techniques as it produces joint compatible

assignments, integrates them over time, and is able to deal

with track creation, confirmation, occlusion, and deletion.

The works closest to this paper are Mucientes et al. [9]

and Joo et al. [15]. Both address the problem of group

tracking using an MHT approach. Mucientes et al. employ

two separate MHTs, one for the regular association problem

between observations and tracks and a second stage MHT

that hypothesizes over group merges. However, people tracks

are not replaced by group tracks, hence there is no gain

in efficiency. The main benefit of that approach is the

semantical extra information about formation of groups.

Joo et al. [15] present a visual group tracker using a

single MHT to create hypotheses of group splits and merges

and observation-to-track assignments. They develop an in-

teresting variant of Murty’s algorithm [16] that generates

the k-best non-unique assignments which enables them to

make multiple assignments between observations and tracks,

thereby describing target splits and merges. However, the

method only produces an approximation of the optimal k-

best solutions since the posterior hypothesis probabilities

depend on the number of splits, which, at the time when the

k-best assignments are being generated, is unknown. In our

approach, the split, merge and continuation events are given

by the model before computing the assignment probabilities,

and therefore, our k-best solutions are optimal.

In this paper we propose a tracking system for groups of

people using an extended Multi-Hypothesis Tracking (MHT)

approach to hypothesize over both, the group formation

process (models) and the association of observations to

tracks (assignments). Each model, defined to be a particular

partitioning of tracks into groups, creates a new tree branch

with its own assignment problem. As a further contribution

we propose a group representation that includes the shape of

the group and we show how this representation is updated in

each step of the tracking cycle. This extends the previous

approaches where groups are assumed to have Gaussian

shapes only [11], [9]. Finally, we use the psychologically

motivated proxemics theory introduced by Hall [17] for the
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definition of a group. The theory relates social relation and

body spacing during social interaction.

The paper is structured as follows. The following section

describes the extraction of groups of people from laser

range data. Section III introduces the definition of groups.

Section IV briefly describes the cycle of our Kalman filter-

based tracker. Section V explains the data-driven generation

of models and how their probabilities are computed. Whereas

Section VI presents the multi-model MHT formulation and

derives expressions for the hypothesis probabilities, Sec-

tion VII describes the experimental results.

II. GROUP DETECTION IN RANGE DATA

Detecting people in range data has been approached with

motion and shape features [1], [2], [3], [4], [5], [9] as

well as with a learned classifier using boosted features

[18]. However, these recognition systems were designed (or

trained) to extract single people. In the case of densely

populated environments, groups of people typically produce

large blobs in which individuals are hard to recognize. We

therefore pursue the approach of background subtraction

and clustering. Given a previously learned model (a map

of the environment for mobile platforms), the background

is subtracted from the scans and the remaining points are

passed to the clustering algorithm. This approach is also able

to detect standing people as opposed to [9] which relies on

motion features.

Concretely, a laser scanner generates measurements zi =
(φi, ρi)

T
, i ∈ {1, . . . Nz}, with φi being the bearing and

ρi the range value. The measurements zi are transformed

into Cartesian coordinates and grouped using single linkage

clustering [19] with a distance threshold dP . The outcome

is a set of clusters Zi making up the current observation

Z(k) = {Zi | i = 1, . . . , NZ}. Each cluster Zi is a complete

set of measurements zi that fulfills the cluster condition,

i.e., two clusters are joined if the distance between their

closest points is smaller than dP . A similar concept, using

a connected components formulation, has been used by

Gennari and Hager [11]. The clusters then contain range

readings that can correspond to single legs, individual people,

or groups of people, depending on the cluster distance dP .

III. GROUP DEFINITION

This section defines the concept of a group and derives

probabilities of group-to-observation and group-to-group as-

signments.

What makes a collection of people a group is a highly

complex question in general which involves difficult-to-

measure social relations among subjects. A concept related

to this question is the proxemics theory introduced by Hall

[17] who found from a series of psychological experiments

that social relations among people are reliably correlated with

physical distance during interaction. This finding allows us to

infer group affiliations by means of body spacing information

available in the range data. The distance dP thereby becomes

a threshold with a meaning in the context of group formation.

A. Representation of Groups

Concretely, we represent a group as a tuple G = 〈x, C,P〉
with x as the track state, C the state covariance matrix and

P the set of contour points that belong to G. The track state

is composed of the position (x, y) and the velocities (ẋ, ẏ)
to form the state vector x = (x, y, ẋ, ẏ)T of the group.

The points xPi
∈ P are an approximation of the group’s

current shape or spatial extension. Shape information will be

used for data association under the assumption of instanta-

neous rigidity. That is, a group is assumed to be a rigid object

over the duration of a time step ∆t, and consequently, all

points in P move coherently with the estimated group state

x. The points xPi
are represented relative to the state x.

B. Group-to-Observation Assignment Probability

For data association we need to calculate the probability

that an observed cluster Zi belongs to a predicted group

Gj = 〈xj(k+1|k), Cj(k+1|k), Pj 〉. A distance function

d(Zi, Gj) is sought that, unlike the Mahalanobis distance

used by Mucientes et al. [9], accounts for the shape of the

observation cluster Zi and the group’s contour Pj , rather

than just for their centroids. To this end, we use a variant of

the Hausdorff distance. As the regular Hausdorff distance is

the longest distance between points on two contours, it tends

to be sensitive to large variations in depth that can occur in

range data. This motivates the use of the minimum average

Hausdorff distance [20] that computes the minimum of the

averaged distances between contour points,

dHD(Zi, Gj) = min {d(Zi,Pj), d(Pj ,Zi)} (1)

where d(Zi,Pj) is the directed average Hausdorff distance.

Since we deal with uncertain entities, d(Zi,Pj) is calculated

using the squared Mahalanobis distance d2 = νT S−1 ν,

d(Zi,Pj) =
1

|Zi|

∑

zi∈Zi

min
xPj

∈Pj

{

d2(νij , Sij)
}

, (2)

with νij , Sij being the innovation and innovation covariance

between a point zi ∈ Zi and contour point xPj
of the

predicted set Pj transformed into the sensor frame,

νij = zi − (Hxj(k + 1|k) + xPj
) (3)

Sij = H Cj(k + 1|k)HT +Ri (4)

where H = ( 1 0 0 0
0 1 0 0 ) is the measurement Jacobian and Rj

the 2 × 2 observation covariance whose entries reflect the

noise in the measurement process of the range finder.

The probability that cluster Zi originates from Gj is finally

Ni := N (d2
HD(Zi, Gj), Sij) (5)

where N (µ,Σ) denotes the normal distribution.

C. Group-to-Group Assignment Probability

To determine the probability that two groups Gi and

Gj merge, we compute the distance between their closest

contour points in a Mahalanobis sense. In doing so, we have

to account for the clustering distance dP that states identity

of Gi, Gj as soon as their contours come closer than dP . Let
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∆xPij
=xPi

−xPj
be the vector difference of two contour

points of Gi and Gj respectively, we then subtract dP from

∆xPij
unless ∆xPij

≤dP for which ∆xPij
=0. Concretely,

the modified difference becomes ∆x
′
Pij

= max(0, ∆xPij
−

dP uPij
) where uPij

= ∆xPij
/|∆xPij

|.
In order to obtain a similarity measure that accounts

for nearness of group contours and similar velocity, we

augment ∆x
′
Pij

by the difference in the velocity components,

∆x
∗
Pij

= (∆x
′T
Pij
, ẋi − ẋj , ẏi − ẏj)

T . Statistical compati-

bility of two groups Gi and Gj can now be determined with

the (four-dimensional) minimum Mahalanobis distance

d2
min(Gi, Gj) = min

xPi
∈Pi, xPj

∈Pj

{

d2(∆x
∗
Pij
, Ci+Cj)

}

.

The probability that two groups actually belong together, is

finally given by Nij := N
(

d2
min(Gi, Gj), Ci+Cj

)

.

IV. TRACKING CYCLE

This section describes the steps in the cycle of our

Kalman filter-based group tracker. The structure differs from

a regular tracker in the additional steps model generation,

track reprediction and reclustering.

• State prediction: The state prediction of a group track

based on the previous posterior estimates x(k|k), C(k|k)
is given by x(k + 1|k) = A x(k|k) and C(k + 1|k) =
A C(k|k) AT +Q, where A is the state transition matrix

for a constant velocity motion model and Q the 4 × 4
process noise covariance matrix whose entries reflect the

acceleration capabilities of a typical human. The set of

contour points P is now relative to x(k + 1|k).

• Observation: As described in section II, this step involves

grouping the laser range data into clusters Z .

• Model Generation: Models are generated based on the

predicted group tracks and the clusters Z , see section V.

• Reprediction: Based on the model hypotheses that pos-

tulate a split, merge or continuation event for each track,

groups are repredicted so as to reflect the respective model:

If a model hypothesis contains a split of a group, two

new groups are created by duplicating its predicted state.

The same applies for the set P .

If a model hypothesis contains a merge of two groups

Gi, Gj , the repredicted group state xij , Cij is computed

as the multivariate weighted average (omitting (k+ 1|k)),

C−1
ij = C−1

i + C−1
j

xij = Cij (C−1
i xi + C−1

j xj) . (6)

The set of contour points of the merged group is the union

of the two former point sets, Pij = Pi ∪ Pj .

• Reclustering: Reclustering an observed cluster Zi is

necessary when it has been produced by more than one

group track, that is, it is in the gate of more than one

track. If the model hypothesis postulates a merge for the

involved tracks, nothing needs to be done. Otherwise, Zi

needs to be reclustered, which is done using a nearest-

neighbor rule: those points zi ∈ Zi that share the same

nearest neighbor track are combined in a new cluster. This

step follows from the uniqueness assumption – common in

target tracking – which says that a target can only produce

a single observation.

• Data Association MHT: This step involves the generation,

probability calculation, and pruning of data association hy-

potheses that assign repredicted group tracks to reclustered

observations. See section VI.

• Update: A group track Gj that has been assigned to a

cluster Zi is updated with a standard linear Kalman filter

using the centroid position z̄Zi
of Zi. The contour points

in Pj are replaced by the points in Zi, transformed into

the reference frame of the posterior state x(k + 1|k + 1).
Thereby, Pj contains always the group’s most actual shape

approximation.

V. MODEL GENERATION AND MODEL PROBABILITY

A model is defined to be a partitioning of tracks into

groups. It assumes a particular state of the group formation

process. New models, whose generation is described in this

section, hypothesize about the evolution of that state.

The space of possible model transitions is large since

each group track can split into an unknown number of new

tracks, or merge with an unknown number of other tracks.

We therefore bound the possible number of model transitions

by the assumption that merge and split are binary operators.

We further impose the gating condition for observations

and tracks using the minimum average Hausdorff distance,

thereby implementing a data-driven aspect into the model

generation step. Concretely, we assume:

• A track Gi can split at most into two tracks in one frame

provided two compatible observations with Gi.

• At most two group tracks Gi, Gj can merge into one

track at the same time but only if there is an observation

which is statistically compatible with Gi and Gj .

• A group track can only split into tracks that are both

matched in that very time step. Splits into occluded or

obsolete tracks are not allowed.

• A group track can not be involved in a split and a merge

action at the same time.

Gating and statistical compatibility are both determined on

a significance level α. The limitation to binary operators is

justified by the realistic assumption that we observe the world

much faster than the rate with which it evolves. Even if, for

instance, a group splits into three subgroups at once, the

tracker requires only two cycles to reflect this change.

A new model now defines for each group track if it is

continued, split or if it merges with another group track.

The probability of a model is calculated using constant

prior probabilities for continuations and splits, pC and pS

respectively, and the probability for a merge between two

tracks Gi and Gj as pG · Nij . The latter term consists

of a constant prior probability pG and the group-to-group

assignment probability Nij defined in section III-C. Let NC

and NS be the number of continued tracks and the number
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Fig. 1. The multi-model MHT. For each parent hypothesis, model
hypotheses (ellipses) branch out and create their own assignment problems.
In our application, models define which tracks of the parent hypothesis are
continued, split or merge. The tree shows frames 13 to 15 of figure 2. The
split of group 1 between frames 14 and 15 is the most probable hypothesis
following model branch 0. See the legend for details.

of split tracks in model M respectively, then the probability

of M conditioned on the parent hypothesis Ωk−1 is

P (M |Ωk−1) = pNC

C · pNS

S

∏

Gi,Gj∈Ωk−1

( pG · Nij)
δij (7)

with δij being 1 if Gi, Gj merge and 0 otherwise.

VI. MULTI-MODEL MHT

In this section we describe our extension of the original

MHT by Reid [13] to a multi-model tracking approach that

hypothesizes over both, data associations and models.

Let Ωk
i be the i-th hypothesis at time k and Ωk−1

p(i) its

parent. Let further ψi(k) denote a set of assignments which

associates predicted tracks in Ωk−1
p(i) to observations in Z(k).

As there are many possible assignment sets given Ωk−1
p(i) and

Z(k), there are many children that can branch off a parent

hypothesis, each with a different ψ(k). This makes up an

exponentially growing hypothesis tree.

The multi-model MHT introduces an intermediate tree

level for each time step, on which models spring off from

parent hypotheses (Fig. 1). In each model branch, the tracks

of the parent hypothesis are first repredicted to implement

that particular model and then assigned to the (reclus-

tered) observations. Possible assignments for observations

are matches with existing tracks, false alarms or new tracks.

Using the generalized formulation of Arras et al. [7] to deal

with more than two track interpretation labels, tracks are

interpreted as matched, obsolete or occluded.

A. Probability Calculations

The probability of a hypothesis in the multi-model MHT is

calculated as follows. According to the Markov assumption,

the probability of a child hypothesis Ωk
i given the obser-

vations from all time steps up to k, denoted by Zk, is the

joint probability of the assignment set ψi(k), the model M
and the parent hypothesis Ωk−1

p(i) , conditioned on the current

observation Z(k). Using Bayes rule, this can be expressed as

the product of the data likelihood with the joint probability

of assignment set, model and parent hypothesis,

P (Ωk
i |Z

k) = P (ψ,M,Ωk−1
p(i) |Z(k)) (8)

= η · P (Z(k)|ψ,M,Ωk−1
p(i) ) · P (ψ,M,Ωk−1

p(i) ).

By using conditional probabilities, the third term on the

right hand side can be factorized into the probabilities of

the assignment set, the model and the parent hypothesis,

P (ψ,M,Ωk−1
p(i) ) = P (ψ|M,Ωk−1

p(i) ) · P (M |Ωk−1
p(i) ) · P (Ωk−1

p(i) ).

The last term is known from the previous iteration while the

second term was derived in section V.

The first term is the probability of the assignment set ψ.

The set ψ contains the assignments of observed clusters

Zi and group tracks Gj either to each other or to one of

their possible labels listed above. Assuming independence

between observations and tracks, the probability of the

assignment set is the product of the individual assignment

probabilities. They are: pM for matched tracks, pF for false

alarms, pN for new tracks, pO for tracks found to be occluded

and pT for obsolete tracks scheduled for termination. If the

number of new tracks and false alarms follow a Poisson

distribution (as assumed by Reid [13]), the probabilities pF

and pN have a sound physical interpretation as pF = λFV
and pN = λNV where λF and λN are the average rates of

events per volume multiplied by the observation volume V
(the sensor’s field of view). The probability for an assignment

ψ, given a model M and a parent hypothesis Ωk−1 is then

computed by

P (ψ|M,Ωk−1) = pNM

M pNO

O pNT

T λNF

F λNN

N V NF +NN , (9)

where the Ns are the number of assignments in ψ to the

respective labels.

Thanks to the independence assumption, also the data

likelihood P (Z(k)|ψ,M,Ωk−1
p(i) ) is computed by the product

of the individual likelihoods of each observation cluster Zi in

Z(k). If ψ assigns an observation Zi to an existing track, we

assume the likelihood of Zi to follow a normal distribution,

given by Eq. 5. Observations that are interpreted as false

alarms and new tracks are assumed to be uniformly dis-

tributed over the observation volume V , yielding a likelihood

of 1/V . The data likelihood then becomes

P (Z(k)|ψ,M,Ωk−1) =
(

1
V

)NN+NF

NZ
∏

i=1

N δi

i , (10)

where δi is 1 if Zi has been assigned to an existing track,

and 0 otherwise.

Substitution of Eqs. (7), (9), and (10) into Eq. (8) leads,

like in the original MHT approach, to a compact expression,

independent on the observation volume V .

Finally, normalization is performed yielding a true prob-

ability distribution over the child hypotheses of the current

time step. This distribution is used to determine the current

best hypothesis and to guide the pruning strategies.

B. Pruning

Pruning is essential in implementations of the MHT algo-

rithm, as otherwise the number of hypotheses grows bound-

less. We employ multi-parent k-best branching as proposed

by Cox et al. [21] which, instead of creating all children

of all parent hypotheses, generates only the globally k most
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TABLE I

SUMMARY OF THE DATA USED IN THE TWO EXPERIMENTS.

Experiment 1 Experiment 2

Number of frames 578 991
Avg. / max people 6.25 / 13 8.99 / 20
Avg. / max groups 2.60 / 4 4.16 / 8
Number of splits / merges 5 / 10 48 / 44
Number of new tracks / deletions 19 / 15 34 / 39

probable ones in polynomial time using Murty’s algorithm

[16]. We further perform ratio pruning and N -scan-back

pruning, see [14] for details.

VII. EXPERIMENTS

To analyze the performance of our system, we collected

two data sets in a large entrance hall of a university building.

We used a Pioneer II robot equipped with a SICK laser

scanner mounted at 30 cm above floor, scanning at 10 fps. In

two unscripted experiments (experiment 1 with a stationary

robot, experiment 2 with a moving robot), up to 20 people

are in the sensor’s field of view. They form a large variety of

groups during social interaction, move around, stand together

and jointly enter and leave the hall (see Tab. I).

To obtain ground truth information, we labeled each single

range reading. Beams that belong to a person receive a

person-specific label, other beams are labeled as non-person.

These labels are kept consistent over the entire duration of

the data sets. People that socially interact with each other

(derived by observation) are said to belong into a group with

a group-specific label. Summed over all frames, the ground

truth contains 5629 labeled groups and 12524 labeled people.

The ground truth data is used for performance evaluation

and to learn the parameter probabilities of our tracker. The

values, determined by counting, are pM = 0.79, pO = 0.19,

pT = 0.02, pF = 0.06, pN = 0.02 for the data association

probabilities, and pC = 0.63, pS = 0.16, pG = 0.21
for the group formation probabilities. When evaluating the

performance of the tracker, we separated the data into a

training set and a validation set to avoid overfitting.

Four frames of the current best hypothesis from experi-

ment 2 are shown in Fig. 2, the corresponding hypothesis

tree is shown in Fig. 1. The sequence exemplifies movement

and formation of several groups.

A. Clustering Error

Given the ground truth information on a per-beam basis we

can compute the clustering error of the tracker. This is done

by counting how often a track’s set of points P contains too

many or wrong points (undersegmentation) and how often

P is missing points (oversegmentation) compared to the

ground truth. For experiment 1, the resulting percentages of

incorrectly clustered tracks for the cases undersegmentation,

oversegmentation and the sum of both are shown in Fig. 3

(left), plotted against the clustering distance dP . The figure

also shows the error of a single-linkage clustering of the

range data as described in section II. This implements a

memory-less group clustering approach against which we

compare the clustering performance of our group tracker.

Fig. 2. Tracking results from experiment 2. In frame 5, two groups are
present. In frame 15, the tracker has correctly split group 1 into 1-0 and 1-1
(see Fig. 1). Between frames 15 and 29, group 1-0 has split up into groups
1-0-0 and 1-0-1, and split up again. New groups, labeled 2 and 4, enter the
field of view in frames 29 and 55 respectively. Compared to ground truth
(shown as nested bounding boxes for groups and their individuals), group 0
gets temporarily oversegmented in frames 10-15.

The minimum clustering error of 3.1% is achieved by the

tracker at dP = 1.3m. The minimum error for the memory-

less clustering is 7.0%, more than twice as high. In the

more complex experiment 2, the minimum clustering error

of the tracker rises to 9.6% while the error of the memory-

less clustering reaches 20.2%. The result shows that the

group tracking problem is a recursive clustering problem that

requires integration of information over time. This occurs

when two groups approach each other and pass from opposite

directions. The memory-less approach would merge them

immediately while the tracking approach, accounting for the

velocity information, correctly keeps the groups apart.

In the light of the proxemics theory the result of a minimal

clustering error at 1.3 m is noteworthy. The theory predicts

that when people interact with friends, they maintain a range

of distances between 45 to 120 cm called personal space.

When engaged in interaction with strangers, this distance is

larger. As our data contains students who tend to know each

other well, the result appears consistent with Hall’s findings.

B. Tracking Efficiency

When tracking groups of people rather than individuals,

the assignment problems in the data association stage are

of course smaller. On the other hand, the introduction of

an additional tree level on which different models hypoth-

esize over different group formation processes comes with

additional computational costs. We therefore compare our
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Fig. 3. Left: clustering error of the group tracker compared to a memory-
less single linkage clustering (w/o tracking). The smallest error is achieved
for a cluster distance of 1.3 m which is very close to the border of personal
and social space according to the proxemics theory, marked at 1.2 m by the
vertical line. Right: average cycle time for the group tracker versus a tracker
for individual people plotted against the ground truth number of people.

system with a person-only tracker which is implemented by

inhibiting all split and merge operations and reducing the

cluster distance dP to the very value that yields the lowest

error for clustering single people given the ground truth. For

experiment 2, the resulting average cycle times versus the

ground truth number of people is shown in Fig. 3 (right).

The plots are averaged over different k from the range of 2

to 200 at a scan-back depth of N = 30.

With an increasing number of people, the cycle time for

the people tracker grows much faster than the cycle time of

the group tracker. Interestingly, even for small numbers of

people the group tracker is faster than the people tracker.

This is due to occasional oversegmentation of people into

individual legs tracks. Also, as mutual occlusion of people

in densely populated environments occurs often, the people

tracker has a lot more occluded tracks to maintain than the

group tracker, as occlusion of entire groups is rare.

This result clearly shows that the claim of higher efficiency

holds for this group tracking approach. With an average cycle

time of around 100 ms for up to 10 people on a Pentium IV

at 3.2 GHz, the algorithm runs in real-time even with a non-

optimized implementation.

VIII. CONCLUSION

In this paper, we presented a multi-model hypothesis

tracking approach to track groups of people. We extended the

original MHT approach to incorporate model hypotheses that

describe track interaction events that go beyond what data

association can express. In our application, models encode

the formation of groups during split, merge, and continuation

events. We further introduced a representation of groups that

includes their shape, and employed the minimum average

Hausdorff distance to account for the shape information

when calculating association probabilities.

The proposed tracker has been implemented and tested

using a mobile robot equipped with a laser range finder. It

is able to robustly track groups of people as they undergo

complex formation processes. Given ground truth data with

over 12,000 labeled occurrences of people and groups, the

experiments showed that the tracker could reproduce such

processes with a low clustering error when considering an

error measure on a per-beam basis. Further experiments

carried out in populated environments with up to 20 people

demonstrated that tracking groups of people is clearly more

efficient than tracking individual people. They also showed

that our system performs significantly better than a memory-

less single-frame clustering which underlines the recursive

character of this model selection problem.
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