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Abstract— Recently, Rao-Blackwellized particle filters have our map representation. Finally, we show experimentstithts

become a popular tool to solve the simultaneous localizatio jng the improvements of our approach to Rao-Blackwellized
and mapping problem. This technique applies a particle filte in mapping.

which each particle carries an individual map of the envirorment.
Accordingly, a key issue is to reduce the number of particles
and/or to make use of compact map representations. This
paper presents an approximative but highly dficient approach Solutions to the SLAM problem can be classified according
to mapping with Rao-Blackwellized particle filters. Moreover, it tg theijr underlying estimation technique. The most popu-
provides a compact map model. A key advantage is that the |, 50h15aches are Extended Kalman filters (EKFs), maxi-
individual particles can share large parts of the model of tke N . . . )
environment. Furthermore, they are able to re-use an alreag MumM likelihood techniques, sparse extended informaticersl
computed proposal distribution. Both techniques substanally (SEIFS), and Rao Blackwellized particle filters (RBPFs)eTh
speed up the overall process and reduce the memory require- effectiveness of the EKF comes from the fact that it estimates
ments. Experimental results obtained with mobile robots inlarge- e fully correlated posterior over landmark positions estabt
anle indoor environments and based on published, standard poses [10, 17]. Its weakness lies in the strong assumptions
atasets illustrate the advantages of our methods over préws . - -
Rao-Blackwellized mapping approaches. regarding the motion model and the sensor noise. Moreover,
the landmarks are assumed to be uniquely identifiable. There
exist techniques [16] to deal with unknown data association
|. INTRODUCTION in the SLAM context. However, if certain assumptions are
violated the filter is likely to diverge [6].
Learning maps is a fundamental task of mobile robots andan alternative approach is to use a maximum likelihood
a lot of researchers focused on this problem. In the Iiteeatua|gorithm that computes a map by constructing a network
the mobile robot mapping problem is often referred to as thg relations. The relations represent the spatial comgsai
simultaneous localization and mapping (SLAMYblem [3, 7, petween the poses of the robot [8, 12].
8,9, 13, 14, 15, 20]. In general, SLAM is a complex problem Thrun et al. [20] proposed a SEIF method which uses the
because for learning a map the robot requires a good p@sgerse of the covariance matrix. In this way, measurements
estimate while at the same time a consistent map is needed4@ be integratedficiently. Eusticeet al. [5] presented an
localize a robot. This dependency between the pose and f#roved technique to accurately compute the error-bounds
map estimate makes the SLAM problem hard and requires\{ghin the SEIF framework and thus reduces the risk of
search for a solution in a high-dimensional space. becoming overly confident.
Murphy, Doucet, and colleagues [15, 2] introduced Rao- In [15, 2], Rao-Blackwellized particle filters have been
Blackwellized particle filters (RBPFs) as aifextive means introduced as anfiective means to solve the SLAM problem.
to solve the SLAM problem. The main problem of the RacEach particle in a RBPF represents a potential trajectory of
Blackwellized approaches is their complexity, measured iRe robot and a map of the environment. The framework has
terms of the number of particles required to learn an aceur@deen subsequently extended by Montemestoal. [13, 14]
map. Reducing this quantity is one of the major challenges ffor approaching the SLAM problem with landmarks. To learn
this family of algorithms. accurate grid maps, RBPFs have been used by Eliazar and
The contribution of this paper is a technique that reduces tRarr [3] and Hahnedt al.[9]. Whereas the first work describes
computational and the memory requirements in the contextaf dficient map representation, the second one presents an
Rao-Blackwellized mapping. In this way, it becomes feasibimproved motion model that reduces the number of required
to maintain a comparably large set of particles online. Thigrticles. A combination of the approach of Hahaeehl. and
is achieved by enabling a subset of samples to share lalgentemerloet al. as been presented by Grisedti al. [7],
parts of the map and to use the same proposal distributievhich extends the ideas of FastSLAM-2 to the grid map case.
Our system allows a standard laptop computer to perform &lle present in this paper an approximative solution to Rao-
computations necessary to learn accurate maps with mame tgackwellized mapping which describes how to draw particle
one thousand samples online. and how to represent maps so that the system can be executed
This paper is organized as follows. After the discussion sfgnificantly faster and needs less memory resources.
related work, we briefly introduce Rao-Blackwellized map- Lisien et al. [11] realized an hierarchical map model in
ping. We then describe our technique fdfigently drawing the context of SLAM and reported that this improves loop-
particles from a proposal distribution. After this, we gres closing. Bosseet al. [1] describe a generic framework for
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SLAM in large-scale environments. They use a graph stractur IV. SpeepiNGg Up Rao-BLACKWELLIZED M APPING
of local maps with relative coordinate frames similar to the

work described in [4]. This approach is able to reduce t?'” this section, we present our approach to Rao-

complexity and at the same time it can better deal wit ackwellized mapping which is able to handle large pagticl
X o . ets while reducing the memory and computational require-
linearization problems in the context of EKF-SLAM. Our 9 y b d

. : . ments. Our implementation is based on the open-source im-
approach is related to this framework since we also use lo A mentation [18] of the mapping system of Grisettal. [7].
maps attached to a graph structure to model the environm

However, our motivation to use such a map representation ise mayor drawback of this approach lies in its complexity.
P ) P Trep ItTuns online only for small particle sets. This is due to an
to allow multiple particles to share a map.

informed but expensive to compute proposal distributionctvh

The contribution of the paper is a computational and meny getermined for each particle individually. Furthermazach
ory dficient Rao-Blackwellized particle filter for SLAM. Ourparticle maintains a full grid map.

approach allows the robot tdfgiently determine the proposal In the context of Rao-Blackwellized particle filters for

distribu_tions to sample the O?Xt generation of particlesn SLAM, the proposal is used to model the relative movement
approximative manner. Additionally, we present a compa_g‘e the vehicle under uncertainty. In most situations, this

map model in which multiple particles share a map. Thigcertainty is similar for all samples within one movemeént.

memory and computational requirements compared 10 Stgigs harticles as long as they appear to represent similar
of-the-art Rao-Blackwellized mapping approaches. state hypotheses. In this section, we derive a way to sample
multiple particles from the same proposal. As a result, the
time consuming computation of the proposal distribution ca
be carried out for a few particles that are representatiges f
. _é;roups of similar samples.

RBPFs for SLAM are used tp estimate the - posteriof Furthermore, local maps which are represented in a robot-
P(xw1.M | 211, Ury-1) @bout the trajectoryxy of the robot .o or0d coordinate frame look similar for many particise.
and the mapn of the environment given t_he opservatlczﬁ therefore present a compact map model in which multiple
and odometry measurementg;_y. Its key idea is to separate articles can share a map. Instead of storing an individagl,m

th?. es:t[!manon of the trajectory of the robot from the ma ach sample maintains only a set of reference frames for the
estimation process different local maps. This substantially reduces the memory
requirements of the mapping algorithm.

I1l. Rao-BLACKWELLIZED M APPING

P(XLt, M| Zog, Ur-1) = P(M| X1, Z1t) P(Xet | 2o, Ure-1). (1)

This can be donefBciently, since the posterior over mapdA. Different Situations During Mapping
p(m| X1, 11) can be computed analytically given the knowl- Before we derive our new proposal distributions, we start

edge ofx;; andz;;. Computing the posteriga(xu: | 211, U-1)  with a brief analysis of the behavior of a RBPF. One can

is similar to the localization problem, since only the tcf®y gistinguish three dierent types of situations during mapping:
of the vehicle needs to be estimated. This is done using a par-

. : s . « The robot is moving throughnknownareas,
ticle filter which incrementally processes the observatiand . :

; .« is moving throughwell-knownareas, or
the odometry readings. The overall process can be summdarize

by the following four steps: + is closing Ioop_ ) ) _
In each of those situations, the filter behave#fedéntly.

1) Sampling The next generation of particles is obtainegyhenever the robot is moving through unknown terrain, the

from the current generation by sampling from a so-call§ghje ctory uncertainty grows. This is due to the fact that th
proposal distribution.

o o ) ) errors are accumulated along the trajectory. The resulting
2) Importance WeightingAn individual importance weight \,certainty can only be bounded by observations which cover

is assigned to each particle according to the most rec%ntpartially) known region.

opservgtlon, .the pose estimate, and the map associatef}, i, second case, a map of the surroundings of the robot is
with this _partlcle_. i i i known and in this way the SLAM problem turns into a local-
3) ResampllngPartlcleS with a low |.mporta_1nce ngght ar€zation problem which is typically easier to handle. Whesrev
typically replaced by samples with a high weight. Thig,q 4p 0t is closing a loop, the particle cloud is often widel
step is necessary since only a finite number of particlgs e By reentering known areas, the filter can typically
is used to approximate a continuous distribution.  yetermine which particles are consistent with their own map
4) Map Estimation The map of each partlt_:le is updated,,j \yhich are not. Such a situation leads to an unbalanced
based on pose represented by that particle. distribution of particle weights. The next resampling awoti
Several authors proposed optimizations to Rao-Blackeealli then eliminates a series of unlikely hypotheses.
mapping. They either presented compact map representaFor each of these three situations, we will present a prdposa
tions [3] to deal with large particle sets or accurate prapoddistribution that needs to be computed only for a small set of
distributions [7, 9, 13] in order to keep the number of sammpleepresentatives rather than for all particles. For therrégg,
small. let us assume that



C. Computing the Proposal for Already Visited Areas

Whenever the robot moves through known areas, each parti-
cle stays localized in its own map according to Assumption 3.
© To update the new pose of each particle while the robot moves,

Fig. 1. Image (a) depicts the pose hypothesis of a particldoéal map, and i ileali i
the computed proposal which represented by the/tished ellipse. Image we maximize the likelihood of the observation around thespos

(b) illustrates the proposal distribution representechindgo-centric reference Predicted by odometry
frame of that sample. Image (c) shows a second particle andhitp. By 0
carrying out a coordinate transform, the proposal of thé fiesticle can be X
used by the second particle as long as their maps are lodaliias (d).

1) the current situation is known, which means that the Analog to Eq. (3)-(5), we can express the proposal of
robot can determine whether it is moving through urparticle j using the one of particle The only diference is
known terrain, within a known area, or is closing a looghat we do not apply the> and © operators based on the

2) the corresponding local maps of two samples are similg@ses of the samples. Instead, the operators are applied bas
if considered in a particle-centered reference frame. fm the particle dependent reference fratfésand 1) of the
the following, we refer to this property &scal similarity local maps. These reference frames were established when
of the maps, previously mapping the terrain. This results in

3) an accurate algorithm for pose tracking is used and the (x | A0 X0 )
observations arefi@ected by a limited sensor noise. P ml_—l’ X & ut(;)l 0 )
~ 1D (px | M, X0, 7, u1) ©19). @)
Combining Eq. (6) and Eq. (7) leads to

argmaxp(x | MY, XV 7, u_1) (8)
Xt

= argmaxp(x | M, XV z, u1). (6)
X

B. Computing the Proposal for Unknown Terrain

When moving through unknown areas, most parts of the Xt(])
map are irrelevant for computing the proposal distribution
Only a local map around the current pose is therefore taken
into account. This map, calleuf'fl, refers to the local map of _
particlei with respect to the posx{?l of that particle at time . _ . x!
stept—1. In the surroundings of the robot, we can approximate 10 e (e 10), (10)

R

1D @ (argmaxp(x | M, x. 2, u1)el®)  (9)
X

(i) (1)

p(x | M., Xf?l,zt, Uer) = p(x | A, Xf?l,zt, uo). (2) Under the Assumptions 2 and 3, we can estimate the poses

of all samples according to Eqg. (10). In this way, the complex
Under Assumption 2, which requires that the maps ebmputation of an informed proposal needs to be done only

particlei and j are locally similar, we can write once. When the robot is in one of the two situations described
, , 0 0 above, the computation of the importance weights is done as
m& S X& = ﬁll_l S th_l- (3) proposed in [7] except that we have to evaluate the weights

only once.

Here® ande are the standard pose compounding operators

(see [12]). E.g.aeb is an operator that translates all the points

in the domain of the functiom so that the new origin of the D- Computing the Proposal When Closing a Loop

domain ofa is b and@ is its inverse. In contrast to the two situations described before, the
We observed that the proposal distributions foffetent computation of the proposal is more complex in case of a

particles are similar if transformed to an ego-centricmeriee loop-closure. This is due to the fact that Assumption 2 (loca

frame similarity) is typically violated even for subsets of pahs.
Q) ) 0 This fact can be illustrated by supposing a widely spreaddctlo
POt [ 27, X770 2 Ue-1) © Xy of particles when closing a loop. Thefdirent samples re-
~ pOx | 0L X0z, uen) X8, (4) enter the previously mapped terrain affelient locations. This

results in dfferent hypotheses about the topology of the envi-
As a result, we can determine the proposal for a paricleronment and definitively violates Assumption 2. Dealinghwit
by computing the proposal in the reference frame of particl&such a situation, requires additiondfaet in the estimation
and translating it to the reference frame of partigle process.
() ) Let us start v_vith the informed proposal considering all
P | M), X5, 2 Ue-a) sensor observationg; and the most recent odometry read-

~ X @ (px | 0, X0z, ue) @ X)), (5) ing w_1. The proposal can be factorized as

. L . . (i)
This computation is illustrated in Figure 1. Eq. (5) shows P(X | Z, Xpy_g Ut—l)_ _
how trar;]sforrr;1 a pkroposal bet_we_elz_r;] particlels while theI robot = np(z | zz1-1, xg:)tfl) P | Xf?l Ut-1) (11)
moves through unknown terrain. The complex proposal com- D Yorx [ X U 12
putation needs to be performed only once and can then be 7P X My )P0 | %y Ueea). (12)
translated to the reference frame of the other particles.  wheren is a normalizer resulting from Bayes’ rule.



_«— uncertainty

Whenever a particlecloses a loop, we consider that its map
”1?1 consists of two components. The first one is a local map —
mlgcal, which has no overlap with the previously seen area arfepot

does not fect the loop closure. Secondly, a loop n‘m@op original cluster newly created particle clusters
which models a previously mapped part of the environmerty. 2. The left image depicts a cluster while the robot israpphing a
re-visited after moving through unknown terrain for a lon op-closure. The shown particle cluster splits up int@¢hdiferent clusters
. . opology hypotheses) as depicted in the right image.
period of time.
() ) can be done in a straightforward way by comparing the area

(i) —
Pz | % MZ) = Pz | % Mo Moo, (13)  covered by the current observation given the particle pase a

Under the assumption that these two maps are disjoint,fi€ map constructed so far. _ _
is possible to choose a likelihood function that allows us to More difficultis to decide whether or not the robot is closing
apply the following factorization a loop. To make this decision, we apply the approach proposed

0 0 0 0 by Stachnisset al. [19] in the context of exploration with
P(Z | Xt Mgear Mogp) & P | Xt M) P(Z | % Mo )(14) - active loop-closing. This approach uses a dual representat

Notice that the computation of the proposal in case of Cé)n5|st|ng of a grid map and a topologic map that models the

loop-closure is more expensive than in the two other sibniati trajectory of the vehicle. By comparing both representedjo

Fortunately, loop-closing situations occur rarely. Thieathas one is able to accurately determine whether or not a robot is
' i .~ . closing a loop.
to travel through unknown and eventually known terrain fof . Lo :
9 y Assumption 2 (local similarity) typically holds only up to

a comparably long period of time before a loop-closure Crst‘He first loop closure but is then violated. By explicitly mod

occur. . . S .
According to the importance sampling principle, the péstic eling the diferent topolc_)g|c_al hypotheses_, itis still pOSSIb|e
. : to represent the posterior in an appropriate way. To achieve
weights are given by L ) . .
local similarity, we introduce the notation ofparticle cluster

) ) p(xﬁi) | z, xf?l rrﬁ,)cal, rrﬂ)op, Ut_1) which describes a subset of particles for which the assampti
w = w, NN O (15) of local similarity between maps holds. Ambiguities in the
0 PO |(f;’ Xta)l Mocar utg)l) 0 posterior can then be modeled using multiple particle ehsst
iy T P(Z | %> M) P(Z | % ,m,oop) Such clusters are obtained by grouping similar samplesato th

[0} O] (16) the maps within one cluster represent the same topology.
o Pz | Xt > Mocal In the following, we explain how to represent such a set
of samples and how to split up a particle cluster in case the
assumption of local similarity is violated.

In our current system, we represent a map as a set of local
maps also called patches. A global map for a given partiale ca

t-1

(i)
i ) @)\
W p@z | X, m ,771) (17)
2

where n; and n, are normalization factors resulting from

Bayes' rule. be obtained by specifying the location of each patch within
a global reference frame. Each sample therefore has to store
E. Approximative Importance Weight Computation only a list of reference framdg) for the patches. In this way,

Eg. (17) tells us how to update the particle weights ifhe individual patche?l,...,?N need to be stored only once
case of a loop closure. Unfortunately, the computation 8 cluster. The map of particlecan be computed by
the normallglng factorsy an_d n2 cannot _be donefﬁcn_ently. m) = U 19 P, (19)
Therefore, in our current implementation, the weights are n
evaluated according to the raw observation model based ORpjithin one particle cluster, the local maps of each particle
the loop mapmoop fulfills the assumption of local similarity. Therefore, the
Wt(i) :WQlFJ(ZtIX(i),ﬁfBO) (18) can share .their patches. Thi; re.sullts. in a more compact
P representation compared to storing individual grid maps.ur
rather than according to Eq. (17). This means that we ignat@rrent implementation, we used a graph structure where eac
the ratio of the normalizing factorg andn, and approximate node is a reference to the corresponding patch. To actually
the importance weights when closing a loop. This is signifmplement this representation, we store for each partiode t
icantly faster to compute and as we will demonstrate in thgate vectors”
experiments, the approximation error is small.

D= L k9 Q. (20)
|
V. ACHIEVING SITUATION ESTIMATION, LOCAL SIMILARITY, AND robot pose cluster ID patches locations
Pose TRACKING Each clusteCy is represented by
All of the derivations made in the previous section require
L . Ck=(P1,---»Pne> . 21
the robot to know whether it is moving through unknown = _l N (@l ) (21)
terrain, through a previously mapped area, or is currently pointer to patchesgraph edges

closing a loop (Assumption 1). Here, we describe how tdote that the nhumbely of patches does not grow with the
distinguish the dferent cases. Detecting the first two situationength of trajectory traveled by the robot. It grows with the
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Fig. 4. The left image depict the Intel Research Lab and thlet one the
Austin ACES building at the University of Texas.
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7 5 v"il:“a COMPARISON OF MEMORY AND COMPUTATIONAL RESOURCES BASED ON THE MIT
I - DATASET USING A PCwirth A 1.3 GHz CPU.

Fig. 3. Learned map of the MIT Killian Court using our appreac | | #particles | execution time | max. memory |
number of relevant patches which is related to the size of theci :Egﬁgzzﬂ i’ggg Zi i iég mg
environment. our approach 500 30 min 165 MB

In the beginning of the mapping process, we start witf RBPF of [18 150 (memory swapping) 2.9 GB
a single cluster, but after closing a loop, multiple topglog | RBPF of [18 80 300 min 15GB
hypotheses typically occur. Whenever a topological hyesith L RBPF of [18 50 190 min 1GB

represented by a particle cluster needs to be split up, one

has to determine which particle belongs to which topoldgicﬁever"’“_nQSt_Qd_IOOpS which can lead to partlcl_e deple_ztlcm. A
hypothesis. In our current implementation, we cluster tH%mwn in this figure, the map does not show inconsistencies
samples according to their Euclidian distance to tHeetnt like f_or example double walls. Comparable results hgve been
nodes in their own graph structure of reference frames. Fpt@ined using the Intel Research Lab and the Austin ACES
each particle, we determine the list of nodes in the fieflptaset which are both depicted in Figure 4.

of view of that sample. We order this list according to the 1n€ Second experiment is designed to show the advantages

Euclidian distance from the pose represented by the Same_eour approac_h _compared o a Rao-BIa(_:kweIIized mapper
to the corresponding node. Then, a cluster is given by tMdthout our optlmlzatlons.. For.thls comparison, we used the
samples which have the same list of nodes. An example whigh€n-source mapper provided in [18]. We compared the dveral

illustrates how new clusters are created in case of a lodfi®: needed to correct the MIT Killian Court dataset and
closure is depicted in Figure 2. the memory used to store the maps. This was done using a

Throughout our experiments, we observed that multipfgomparably slow) PC with a 1.3 GHz CPU and 1.5 GB RAM.

particle clusters are created when closing a loop. The hctJ&€ results of both mapping approaches are summarized in
number ranges up to 50. However, after a few iterations onl@P!€ - In our current implementation, the filter update for
a small number of cluster (up to 5) typically survive. each clustertakes in average 20ms vyhen moving through

Note that it might be possible to represent each cluster by 5?10"\_’” terrain and 200 ms when moving thrpugh “r?"”OW”
EKF and not by particles like we do. However, in this case Oljigrram._ Wh_en actually closing a Ioo_pach pgrnclerequwes
would have to deal with linearization problems and Gaussié‘rﬁ’pr?x'mat'veliy 2ms ofdexecunon ume er"le the check for
uncertainty. Furthermore, our approach uses grid maps aIHS closure takes around 0.3ms per sample.

does not rely on predefined feature extractors like typi¢dt E _S!nce the approximated proposgl IS not as gccurate as the
approaches do. original one, we need more particles to achieve the same

To fulfill Assumption 3, we apply an incremental Scaﬁobustness in filter convergence and quality of the resyltin

alignment technique based on laser range finder daf32Ps- However, we can maintain more than one order of

The experiments presented in this paper indicate that tﬁr@gnltude more particles while requiring less runtime and

setugimplementation is dficient to satisfy the three assump—memory' In all our experiments, this fiigiently accounted

tions. As a result, we obtain a mapping system which providgér_rt:e Ies; accurately_drawn sam_plles. db formi
highly accurate maps in a fast and memofiycgent manner. e savings on runtime are mainly caused by "ar!s orming
an already computed proposal distribution so that it can be

used for several particles instead of computing it fromtetra
V1. EXPERIMENTS each time. The memory savings are due to the fact that
In this section, we present experiments based on real rolait particles within a cluster can share a single map model.
datasets which are commonly used within the SLAM conturthermore, the memory usage and runtime of our approach
munity. In the first experiment, we corrected several logfilggrows much slower when increasing the number of particles.
using our approach. Figure 3 depicts the resulting map of thle reason is that the complexity of our filter grows mainly
MIT Killian Court. This is a challenging dataset, since it isvith the number of topological hypotheses (particle chste
a large (it took 2.5h to record this log file) and it containgvhich need to be maintained and not directly with the number



500 50 With our optimizations, we are able to maintain more than

[%] [

é 400 5%2‘12?5 40 g one order of magnitude more samples and at the same time

§ 300 ‘ ; 30 § require less memory and computatlo_nal resources comp@red t

o | S other state-of-the-art Rao-Blackwellized mapping teghas.

£ 2000 20 2 This increase in number of particles we are able to maintain

3 100 /i 10 5 compensates for the errors introduced by our approximsition
ot = Our approach has been implemented, tested, and evaluated

time based on real robots and standard log files used within the

Fig. 5. This plot depicts the number of patches in the memoy the

number of clusters over time for the MIT dataset using 150@igbes. SLAM community to demonstrate the accuracy as well as the

benefits of our system.

approximated approximated 1 approximated
0.8 exact 0.8 exact 0.8 exact
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