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Abstract— We present an approach to laser-based people
tracking using a multi-hypothesis tracker that detects and
tracks legs separately with Kalman filters, constant velocity
motion models, and a multi-hypothesis data association strategy.
People are defined as high-level tracks consisting of two legs
that are found with little model knowledge. We extend the
data association so that it explicitly handles track occlusions in
addition to detections and deletions. Additionally, we adapt the
corresponding probabilities in a situation-dependent fashion so
as to reflect the fact that legs frequently occlude each other.
Experimental results carried out with a mobile robot illustrate
that our approach can robustly and efficiently track multiple
people even in situations of high levels of occlusion.

I. INTRODUCTION

People tracking is a key technology for robots that oper-

ate in populated environments. Knowledge about presence,

position, and motion state of people will enable robots to

better understand and anticipate their intentions and actions.

Apart from human-robot interaction and cooperation sce-

narios, applications of laser-based people tracking include

also surveillance, crowd control, or pedestrian detection for

intelligent cars.

In this paper we consider the problem of people tracking

from data acquired with two-dimensional laser range finders.

In most related work on laser-based people tracking [1],

[2], [3], [4], [5], [6], [7], [8], [9], a person is represented

as a single state that encodes torso position and velocities.

People are extracted from range data as single blobs or

found by merging nearby point clusters that correspond to

legs. However, the appearance of people in laser range data

depends on the mounting height of the sensor: at hip height

a human torso is typically seen as a single local-minimum

blob while at foot height, legs produce separate, fast-moving

smaller blobs. In practice, the mounting height of the sensor

is often constrained by the application or the robot’s form

factor and not only by the researcher to suit the needs of a

tracking algorithm. Safety regulations, for instance, require

laser scanners to be mounted at foot height. Obviously, at this

height, modeling people as single blobs can be problematic

and thus motivates leg tracking as an approach to laser-based

people tracking. Accordingly, the problem of people tracking

has recently been addressed as a leg tracking problem [10],

[11] where people are represented by the states of two legs,

either in a single augmented state [11] or as a high-level

track to which two low-level leg tracks are associated [10].
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Multi-hypothesis tracking (MHT) [12], [13] belongs to the

most general data association techniques as it produces joint

compatible assignments, integrates them over time, and is

able to deal with track creation, confirmation, occlusion, and

deletion. Other multi-target data association techniques such

as the nearest neighbor filter, the track splitting filter, or the

JPDAF are less powerful or sub-optimal in nature [14].

In the context of people tracking with laser range finders,

Taylor et al. [10] employ an MHT to resolve ambiguities

in the problem of fitting a walking person into two leg

measurements. The authors use a geometric occlusion model

to decrease the detection probability if an occlusion is to be

expected. Mucientes et al. [9] cluster people into groups and

utilize an MHT to handle the assignments of measurements

to single tracks and clusters. Given the high-level concept

of groups, additional assignments of measurements to tracks

within groups become possible for which the authors derive

appropriate probabilities.

In this paper we track legs of people and utilize a multiple

hypothesis tracking approach for data association. Opposed

to most related work in the laser-based people tracking

literature, we address the problem of tracking legs that are

measured individually. Based on the resulting leg tracks, we

create person tracks using the multivariate weighted mean

if two tracks are sufficiently close and move in the same

direction for a certain time frame. Once a person track has

been validated over time, we adapt the individual occlusion

probabilities of both associated leg tracks to account for

the fact that legs frequently occlude each other. To this

end, we extend the MHT framework to explicitely take

into account potential occlusions by introducing adaptive

conditional assignment probabilities.

The paper is structured as follows. The next section briefly

describes the Kalman filter-based tracker used for detecting

and tracking legs. Section III reviews the multi-hypothesis

tracking approach, especially the expressions to calculate the

hypothesis probabilities. Section IV introduces the concept

of person tracks and how they are found. This section also

contains the derivation of the probability equations that are

needed to adapt the occlusion probabilities of individual

tracks. Section V describes the experimental results.

II. KF-BASED LEG TRACKER

This section describes the KF-based multi-target tracker

that is used to track legs of people. We briefly go through the

tracking cycle. For the details of Kalman filtering and target

tracking the reader is referred to Bar-Shalom and Li [14].
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State prediction. A leg track is represented as x =
(x, y, vx, vy) where x and y are the track position and vx

and vy the x and y components of the track velocity. With

this state representation new tracks can be properly initialized

with vx = vy = 0. For motion prediction, a constant velocity

model is employed.

Measurement prediction. As the x- and y-coordinates of a

track are directly observable, the 2× 4 measurement matrix

H is formed by the 2× 2 identity matrix in x and y and the

2 × 2 zero matrix in vx and vy .

Observation. The observation step consists in detecting

people in range data. The problem can be seen as a classifi-

cation problem that consists in finding those laser beams that

correspond to people and to discard other beams. Typically,

hand designed classifiers have been employed for this task

with a manual selection of features and thresholds. In a recent

work we used AdaBoost, a supervised learning technique,

to learn a classifier for groups of adjacent beams that

correspond to people [15]. AdaBoost takes a labeled training

set and a (possibly large) vocabulary of features that may

or may not be appropriate for the given classification task.

The method then creates a classifier by selecting the most

informative features and finding the best thresholds (based

on the training set). The AdaBoost classifier proved to be

superior to a manually designed classifier. It shall therefore

be used also in this work.

The observation step delivers the set of observations (or

measurements) zk = {z1
k, z2

k, . . . , zMk

k } at time index k. Mk

denotes the current number of measurements.

Data association. For data association we employ a mod-

ified MHT approach described in the sections hereafter.

Estimation. Given that both, the state and measurement

prediction models are linear, a (non-extended) Kalman filter

as the optimal estimator under the Gaussian assumption can

be employed.

III. MULTI HYPOTHESIS TRACKER

In this section we review the MHT as described in the two

papers by Reid [12] and Cox et al. [13]. In the original paper

by Reid [12] measurements can be interpreted as matches

with existing tracks, new tracks, or false alarms. Tracks are

interpreted as detected (when they match with a measure-

ment) or not detected. Deletion of tracks is not handled by the

MHT but by a heuristics based on sequences of consecutive

non-detections. Cox et al. [13] extend this framework with

the interpretation of tracks as deleted. Thereby, the MHT

handles the entire life-cycle of tracks from creation and

confirmation (by matching) to deletion and occlusion (which

is non-detection and non-deletion).

In order to adapt the occlusion probabilities of individual

leg tracks later in this paper, it is necessary to reconsider

the derivation of the hypothesis probabilities in the MHT,

especially the assignment set probabilities.

Let Ωk
j be the j-th hypothesis at time k and Ωk−1

p(j) the

parent hypothesis from which Ωk
j was derived. Let further

Ψj(k) denote a set of assignments that, based on the parent

x1 x2 xnt xfa

z1 0 0 1 0
z2 1 0 0 0

zdel 0 1 0 0

TABLE I

EXAMPLE OF AN ASSIGNMENT.

hypothesis Ωk−1
p(j) and the current measurement zk, gives rise

to Ωk
j .

The assignment set Ψj(k) associates each measurement

either to an existing track, a false alarm, or a new track

and marks a track as detected or deleted. Assignment sets

are best visualized in matrix form such as the example in

Table I that shows a set of assignments of tracks x1,x2 with

measurements z1 and z2. An assignment is denoted by a

non-zero entry in the matrix. The example shows a situation

in which track x1 is assigned to measurement z2, track x2

is scheduled for deletion, and measurement z1 is interpreted

as a new track.

There are as many possible assignment sets Ψj(k) as

we can distribute 1’s and 0’s over such matrices under the

constraints of unique measurement-to-track associations and

that the only zero-valued rows and columns can belong to the

events deletion, new track, and false alarm. An assignment

set has a probability that is determined by the probabilities

of these events and the probability of a specific distribution

of 1’s and 0’s.

Given an assignment set probability and the probability of

the parent hypothesis Ωk−1
p(j) , we can calculate the probability

of each child hypothesis that has been created as Ψj(k). This

calculation is done recursively [12]:

p(Ωk
j |zk) = p(Ψj(k),Ωk−1

p(j) |zk)

Bayes+
=

Markov
η p(zk|Ψj(k),Ωk−1

p(j))p(Ψj(k)|Ωk−1
p(j)) ·

p(Ωk−1
p(j)). (1)

The rightmost term on the right-hand side is the recursive

term, that is, the probability of its parent. Factor η is a

normalizer. The leftmost term on the right-hand side after

the normalizer η is the measurement likelihood. We assume

that a measurement zi
k associated to a track xj has a Gaussian

pdf centered around the measurement prediction ẑ
j
k with in-

novation covariance matrix Si,j
k , N (zi

k) := N (zi
k ; ẑj

k,Si,j
k ).

We further assume the pdf of a measurement belonging to

a new track or false alarm being uniform in the observation

volume V (the field of view of the sensor) with probability

V −1. Thus

p(zk|Ψj(k),Ωk−1
p(j)) =

Mk
∏

i=1

N (zi
k)δiV 1−δi

= V −(Nfal+Nnew )
Mk
∏

i=1

N (zi
k)δi (2)

with Nfal and Nnew the number of measurements labeled as

false alarms and new tracks respectively. δi is an indicator

variable being 1 if and only if measurement i has been

associated to a track, 0 otherwise.
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The central term on the right-hand side of Equation (1) is

the probability of an assignment set, p(Ψj(k)|Ωk−1
p(j)), which

is composed of three terms:

1) The probability of the number of tracks Ndet , Nfal ,

Nnew with a certain label. In Reid’s case, with tracks

being either labeled detected or not detected, the num-

ber of detected tracks Ndet given the total number of

tracks in the parent hypothesis, N , follows a binomial

distribution

p(Ndet |Ω
k−1
p(j)) =

(

N

Ndet

)

pNdet

det (1 − pdet)
(N−Ndet )

(3)

Assuming that the number of false alarm and the num-

ber of new tracks both follow a Poisson distribution

with expected number of events λfalV and λnewV in

the observation volume V respectively, we obtain

p(Ndet , Nfal , Nnew |Ω
k−1
p(j)) =

(

N
Ndet

)

pNdet

det (1 − pdet)
(N−Ndet )

·µ(Nnew ;λnewV ) · µ(Nfal ;λfalV ) (4)

where µ(n;λV ) is the Poisson distribution for n events

when the average rate of events is λV .

2) The probability of a specific assignment of measure-

ments so that Mk = Ndet + Nfal + Nnew holds.

The probability is determined as 1 over the number

of combinations which is
(

Mk

Ndet

)(

Mk − Ndet

Nfal

)(

Mk − Ndet − Nfal

Nnew

)

(5)

where the last term equals 1.

3) The probability of a specific assignment of tracks given

that a track can either be detected or not detected. The

probability is determined as 1 over the number of these

assignments

N !

(N − Ndet)!

(

N − Ndet

Ndet

)

. (6)

The first term follows from the combinatorial fact,

that a track can be chosen only once and the track-

to-measurement order matters.

It is noteworthy (and one of the key contributions of

Reid [12]) that in the product of these three probabilities

many terms cancel out, and substituted into the Equation (1),

the final probability p(Ωk
j |zk) becomes a simple and easy to

calculate expression independent of the observation volume

V .

IV. PERSON TRACKING AND OCCLUSION ADAPTATION

The tracking system presented in the previous sections

maintains N tracks that correspond to human legs. Only on

the level of these N tracks, we reason on the existence of

people by the use of the following model knowledge:

1) People have always two legs

2) Legs are close to each other

3) Legs move in a similar direction

4) Legs have a higher probability of occluding each other

than being occluded by other people’s legs or objects

In contrast to previous work [10], [11] we do not describe

people by a more complex model that also encodes the

dynamics of a walking person. People have a large variety

of leg motion patterns (such as random steps on the spot

while they are waiting) that are not adequately captured by

walking models typically found in the literature [10].

To create a person track, we implement the above-

mentioned model as follows:

1) A person track is defined as a high-level track to which

two legs tracks are associated. The state of a person is

estimated from the state of the two legs tracks using

the multivariate weighted mean.

2) Two tracks xi,xi that satisfy a nearness condition

given a threshold θd which in our case is set to 0.75

meter form a person candidate.

3) A person candidate is validated if the two tracks max-

imize the scalar product of their orientations summed

over the track histories S =
∑

t < θt
i , θt

j > with

θi = atan2(v2
y,i, v

2
x,i) being the orientation of track xi.

In practice, we calculate S only in a sliding window

over the last L steps and validate a person track

that satisfies S > θa where θa is an experimentally

determined threshold.

4) The adaptation of the occlusion probability is described

in detail in the following subsection.

Person tracks are deleted if either the MHT deletes one or

both of its leg tracks or if condition 2) does not hold anymore

for L consecutive steps.

A. Adaptation of occlusion probability

According to Reid [12], who only considers the label

detected, the number of tracks with this label, Ndet , follows

a binomial distribution. In the more general case, in which

we have an arbitrary number of labels, the number of tracks

with a given label follows a multinomial distribution.

Besides detection (according to Reid [12]) and deletion

(introduced by Cox and Hingorani [13]) we introduce the

label occlusion. Thus, the pdf of the labeling of the tracks

into detected, occluded, and deleted is

p(Ndet , Nocc , Ndel |Ω
k−1
p(j)) =

N !

Ndet !Nocc !Ndel !
pNdet

det pNocc
occ pNdel

del (7)

with pdet + pocc + pdel = 1 and N = Ndet + Nocc + Ndel .

Equation (7) is the generalization of Equation (3) and allows

to specifically adjust the label probabilities. Occlusions are

no longer implied by non-detection and non-deletion but are

made explicit as a label with their own specific probability.

However, adjusting individual probabilities raises the ques-

tion whether probabilities of assignments and hypotheses re-

main properly normalized across branches in the hypothesis

tree. We will now verify that the consistency in this sense is

maintained.

In our case, there are leg tracks that are associated to val-

idated person tracks and leg tracks that are either associated
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to non-validated person tracks or to no person track at all.

We will denote the former as approved (by the superscript

A) and the latter as free (by the superscript F ). With NA

and NF as the number of approved and the number of free

tracks respectively, N = NA + NF and likewise

NF = NF
det + NF

occ + NF
del (8)

NA = NA
det + NA

occ + NA
del . (9)

The evidence approved and free conditions the probabilities

in Equation (7) such that the right-hand side must be rewrit-

ten as the product of two multinomial distributions, each

with three conditional probabilities pdet|F , pdel|F , pocc|F and

pdet|A, pdel|A, pocc|A for which pdet|F +pdel|F +pocc|F = 1
and pdet|A + pdel|A + pocc|A = 1 must hold. The product

of multinomial distributions is explained by the fact that a

track can only be either approved or free.

As a consequence, the three product terms that compose

the assignment set probability, p(Ψj(k)|Ωk−1
p(j)), are altered

as follows. The first term, the probability of the number of

tracks with a certain label becomes

p(NF
det , N

F
occ , N

F
del , N

A
det , N

A
occ , N

A
del , Nnew , Nfal |Ω

k−1
p(j))

= NF !
NF

det
!NF

occ !N
F

del
!
· p

NF

det

det|F · p
NF

occ

occ|F · p
NF

del

del|F ·

NA!
NA

det
!NA

occ !N
A

del
!
· p

NA

det

det|A · p
NA

occ

occ|A · p
NA

del

del|A ·

µ(Nfal ;λfalV ) · µ(Nnew ;λnewV ) (10)

The second term, the probability of a specific combination

of these numbers, is calculated as 1 over the number of these

combinations, which is
(

Mk

NF
det

)(

Mk − NF
det

NA
det

)(

Mk − NF
det − NA

det

Nnew

)

·

(

Mk − NF
det − NA

det − Nnew

Nfal

)

=
Mk!

NF
det !N

A
det !Nnew !Nfal !

(11)

since Mk = NF
det + NA

det + Nnew + Nfal .

Similarly, for the third term, the probability of the number

of track-to-measurement associations determined as 1 over

the number of these associations, is 1 over

NF !

(NF − NF
det)!

(

NF − NF
det

NF
occ

) (

NF − NF
det − NF

occ

NF
del

)

·

NA!

(NA − NA
det )!

(

NA − NA
det

NA
occ

)(

NA − NA
det − NA

occ

NA
del

)

=
NF !NA!

NF
occ !N

F
del!N

A
occ !N

A
del !

(12)

When combining these results, many terms cancel out like in

Reid’s approach [12]. Accordingly, we obtain the assignment

set probability as

p(Ψj(k)|Ωk−1
p(j)) =

η′ · p
NF

det

det|F · p
NF

occ

occ|F · p
NF

del

del|F · p
NA

det

det|A · p
NA

occ

occ|A · p
NA

del

del|A ·

λNnew
new · λ

Nfal

fal · V Nnew+Nfal (13)

where η′ is a constant normalization factor.

Substituting Equation (13) and the measurement likelihood

from Equation (2) into Equation (1) yields the final expres-

sion for the probability of a child hypothesis

p(Ωk
j |zk) = η′′

Mk
∏

i=1

N (zi
k)δi ·

p
NF

det

det|F · p
NF

occ

occ|F · p
NF

del

del|F · p
NA

det

det|A · p
NA

occ

occ|A · p
NA

del

del|A ·

λNnew
new · λ

Nfal

fal · p(Ωk−1
p (j)). (14)

Here η′′ = η · η′ is a constant normalization factor which

ensures that the probabilities of the hypotheses Ωk
j sum up

to 1. It can be shown that η′′ only depends on Mk. This

means that within the same generation of hypotheses – for

which Mk is identical – proper normalization across all

branches in the tree, that is across all hypothesis probabilities,

is guaranteed.

B. Branching and Pruning Strategies

For an efficient implementation of an MHT, pruning

strategies that limit the exponential explosion of hypotheses

are mandatory. As proposed by Cox and Hingorani [13] we

make use of the following strategies:

• k-Best Branching. Instead of creating all children, we

generate only the k best children for each parent hy-

pothesis. This can be done in polynomial time with an

algorithm proposed by Murty [16].

• Ratio Pruning. A lower limit on the ratio of the current

and the best hypothesis is defined. Unlikely hypotheses

being below this threshold are deleted.

• N-scan-back. The N-scan-back algorithm considers an

ancestor hypothesis at time k − N and looks ahead in

time to all its children at the current time k (the leaf

nodes). It evaluates the probabilities of all leaf nodes

to find and keep the best branch at time k − N and to

discard all others.

V. EXPERIMENTS AND RESULTS

The approach described above has been implemented

and evaluated on a an ActiveMedia Powerbot mobile robot

equipped with a Sick LMS laser scanner mounted at a height

of 11 cm above ground. The angular resolution of the range

scans was 0.5◦. Throughout all experiments we used the

values listed in Table II for the conditional probabilities

introduced in the previous section. Our adaptive method uses

the probabilities with the superscript F for free tracks and the

probabilities with the superscript A for approved tracks. We

compare our method also to the non-adaptive case for which

we use the probabilities with the superscript F as default

values unless otherwise noted.

A. Person walking on an 8-shaped trajectory

In the first experiment a person follows a 8-shaped tra-

jectory in a corridor of about 2.5 meters width in normal

walking speed. As can be seen from Figure 1, our system

was able to reliably track the person despite the fact that it
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pdet|F pocc|F pdel|F pdet|A pocc|A pdel|A λnew λfal

0.3 0.63 0.07 0.2 0.79 0.01 0.001 0.003

TABLE II

PARAMETERS USED THROUGHOUT THE EXPERIMENTS.

only used a constant velocity motion model to track the sharp

turns carried out by the person. The same leg tracks last over

the entire duration of the experiment. This is illustrated by

the diagram in right image of Figure 1 that shows a constant

number of four tracks. Two of the four tracks are due to

false alarms extracted in the clutter. Without adaptation of

the occlusion probability, there is track loss at nearly every

U-turn giving rise to many newly created tracks.
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Fig. 1. Trajectories and total numbers of created tracks for experiment 1.

B. Person turning constantly while moving forward

In the second experiment a person is moving on a straight

line turning 180◦ around the stationary leg at each step

(see Figure 2). This unusual walking pattern produces heavy

occlusions of the moving leg by the stationary one. The

adaptive approach was able to track the person accurately

during the experiment. The total number of tracks in Figure 2

(right) is constant (three), one of them being a false alarm.

The mutual leg occlusion is poorly handled by the non-

adaptive approach as the increasing number of new tracks

in the diagram illustrates.
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Fig. 2. Trajectories and total numbers of created tracks for experiment 2.

C. People walking randomly in a narrow corridor

It remains to be demonstrated that the superior perfor-

mance of the adaptive approach found so far is not just due

to better tuned probability parameters for approved tracks.

This is demonstrated in the third experiment where up to

four people simultaneously move through the field of view

of the sensor. The subjects perform typical motion patterns

at normal walking speed, they avoid each other, turn on the

Person 1

Person 2

Person 3

Person 4

Fig. 3. Trajectories of four people tracks during experiment 3.

spot, cross paths, stop once in a while, and frequently enter

and leave the field of view. This leads up to four validated

people tracks simultaneously (eight leg tracks), not included

false alarms due to, e.g., corners falsely detected as legs.

Figure 3 shows a portion of the experiment with four

simultaneously tracked people. The chance of additional

mutual occlusions from people is substantial in this narrow

environment. Figure 4 depicts the total number of created

tracks. Due to long lasting occlusions produced by other

people, the system sometimes deletes tracks although the

person is still there, and creates new tracks when the person

becomes visible again. However, Figure 4 shows that com-

pared to the non-adaptive case, we are able to track people

more robustly over an extended period of time as the number

of tracks is substantially closer to ground truth. The ground

truth information was obtained by manual inspection.

If we use the parameter setting for approved tracks as

default (and without adaptation), we observe in Figure 5

(left) that the number of simultaneous tracks nearly never

decreases, that is, tracks are deleted with a very low

probability. When tracks are not deleted, their uncertainty

grows boundless producing a high level of ambiguity, and

ergo, a high number of matching candidates that pass the

Mahalanobis test. This causes an explosion of branches in

the hypothesis tree as illustrated in Figure 5 (right). The

diagram shows the number of hypotheses between steps 900

and 1000, the time when all four people were in the field of

view. In the adaptive case, the peak numbers of hypotheses

are seriously more moderate compared to the non-adaptive

approach where the parameters for approved tracks are taken

as default.

The average cycle time in this experiment with four people
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Fig. 4. Total number of created tracks for the adaptive method, the non-
adaptive method, and the ground-truth.
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with parameters for approved tracks as default versus the ground truth (left)
and number of simultaneous hypotheses for our adaptive case and the non-
adaptive method with parameters for approved tracks as default (right).

Fig. 6. Trajectories of robot and people in experiment 4. Person 1 is
constantly tracked, person 2 receives a new identifier when reentering the
sensor’s field of view.

was 44.5 ms on an Athlon 4400+ and with a scan-back depth

of eight (see section IV-B). A significant acceleration (from

initially 220 ms) was due to the introduction of separate

trees for tracks and hypotheses as proposed by Cox and

Hingorani [13] that avoids processing duplicate tracks.

D. Tracking from a moving robot

In the forth experiment the robot moves with an average

translational velocity of 0.33 m/s (max. 0.5 m/s) while track-

ing two people (Figure 6). The two subjects move at normal

walking speeds, stop once in a while with person 2 leaving

and re-entering the robot’s field of view. Consecutive scans

are aligned using odometry information. With a moving

sensor, detection of moving leg blobs is more difficult as

also the background becomes dynamic. Especially in clutter

the AdaBoost classifier therefore generates a higher number

of false alarms. Because people tracks are initialized only

from leg tracks that satisfy our person model, the robot

is able to robustly track the two people with only one

incorrect people track that appears for two iterations. The

non-adaptive approach creates additionally eleven incorrect

leg tracks resulting in a total of four incorrect people tracks.

VI. CONCLUSIONS

In this paper, we addressed the problem of people tracking

as a leg tracking problem utilizing an MHT for data associa-

tion. We extended the original MHT to incorporate adaptive

occlusion probabilities and present a mathematical derivation

for this approach. The approach has been implemented and

tested on a real robot with data acquired by a SICK laser

range sensor. The experimental results demonstrate that our

approach is able to robustly track multiple people based on

observations of their legs even when enduring occlusions

occur. We also carried out experiments that demonstrate that

our adaptive approach outperforms a non-adaptive MHT with

fixed occlusion probability settings, since it overly delays

track deletion and thus produces a high level of ambiguity

coupled with an explosion of the number of hypotheses. Our

current system is able to perform each update fast enough

for online processing on a state-of-the-art desktop computer

even when the robot is tracking four people.

The occlusion model and the approach to extract people

tracks have performed well in all our experiments. Still,

they can both be replaced by more sophisticated models,

independent of the theoretical results presented in this paper.

Future work will aim at occlusion models for groups of

people and a more rigorous technique to create people tracks

from leg tracks.
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