Improving Robustness and Precision in Mobile Robot
Localization by Using Laser Range Finding and Monocular Vision

Kai O. Arras, Nicola Tomatis

Autonomous System Lab
Swiss Federal Institute of Technology Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
kai-oliver.arras@epfl.ch, nicola.tomatis@epfl.ch

Abstract

This paper discusses mobile robot localization by
means of geometric features from a laser range
finder and a CCD camera. The features are line
segments from the laser scanner and vertical edges
from the camera. Emphasis is put on sensor
models with a strong physical basis. For both
sensors, uncertainties in the calibration and
measurement process are adequately modeled and
propagated through the feature extractors. This
yields observations with their first order covari-
ance estimates which are passed to an extended
Kalman filter for fusion and position estimation.

Experiments on a real platform show that
opposed to the use of the laser range finder only, the
multisensor setup allows the uncertainty to stay
bounded in difficult localization situations like
long corridors and contributes to an important
reduction of uncertainty, particularly in the orien-
tation. The experiments further demonstrate the
applicability of such a multisensor localization sys-
tem in real-time on a fully autonomous robot.

1. Introduction

Localization in a known, unmodified environment
belongs to the basic skills of a mobile robot. In
many potential service applications of mobile sys-
tems, the vehicle is operating in a structured or
semi structured surrounding. This property can be
exploited by using these structures as frequently
and reliably recognizable landmarks for naviga-
tion. Topological, metric or hybrid navigation
schemes make use of different types of environ-
ment features on different levels of perceptual
abstraction.

Raw data have the advantage of being as gen-
eral as possible. But, with most sensors, they are
credible only by processing great amounts and are
of low informative value when looking for concise

scene descriptions. Navigation based on geometric
features allow for compact and precise environ-
ment models. Maps of this type are furthermore
directly extensible with feature information from
different sensors and thus a good choice for multi-
sensor navigation. This approach relies however
on the existence of features which represents a
limitation of environment types.

This is viewed as a loss of robustness which can
be diminished by simultaneously employing geo-
metric features from different sensors with com-
plementary properties. In this work we consider
navigation by means of line segments extracted
from 1D range data of a 360° laser scanner and
vertical edges extracted from images of an
embarked CCD camera.

Precise localization is important in service tasks
where load stations might demand accurate dock-
ing maneuvers. Mail delivery is such an example
[2]. When the task includes operation in crowded
environments where a moving vehicle is supposed
to suggest reliability and predictability, precise
and thus repeatable navigation helps evoking this
subjective impression.

The use of the Kalman filter for localization by
means of line segments from range data is not new
[91[11][2][7]. Vertical edges have been equally
employed [8], and propositions for specific match-
ing strategies are available in this context [12]. In
[10], the same features were applied for approach-
ing the relocation problem. The multisensor setup
was used to validate observations of both sensors
before accepting them for localization. In [13], a
similar setup was used with a 3D laser sensor
simultaneously delivering range and intensity
images of the scene in front of the robot. Line seg-
ments and vertical edges were also employed in a
recent work [14], where the localization precision
of laser, monocular and trinocular vision has been
separately examined and compared to ground
truth measurements.



2. Sensor Modeling

It is attempted to derive uncertainty models of the
sensors employed with a strong physical basis.
Strictly speaking, it is necessary to trace each
source of uncertainty in the measurement process
and, with knowledge of the exact measurement
principle, propagate it through the sensor electron-
ics up to the raw measurement the operator will
see. This allows for a consequent statistical treat-
ment with noise models of high fidelity which is of
great importance for all subsequent stages like
feature extraction and matching.

2.1 Laser Range Finder

In all our experiments we used the commercially
available Acuity AccuRange4000LR. The Acuity
sensor is a compromise between building a laser
range finder by one’s own and devices like the
scanners of SICK (e.g. PLS100, LMS200). The lat-
ter two deliver both range and angle information
and come with standard interfaces. Besides the
protocol driver which is to be written, they can be
used practically plug-and-play. The disadvantage
is that this black-box character inhibits the above-
mentioned analysis of noise sources. The
AccuRange 4000 provides range, amplitude and
sensor temperature information, where amplitude
is the signal strength of the reflected laser beam.
They are available as analogue signals.

Relationships for range and angle variance are
sought. The accuracy limit of encoders are usually
low with respect to the beam spot size. Angular
variability is therefore neglected. For range accu-
racy there are several factors which influence the
extent of noise:

= The amplitude of the returned signal which is
available as measurement.

= Drift and fluctuations in sensor circuitry. At the
configured sampling frequency (1 kHz) this is
predominant over thermal noise of the detection
photodiode and resolution artifacts of the inter-
nal timers.

= Noise injected by the AD conversion electronics.

In [1] a phase shift measurement principle has
been examined yielding a range variance to ampli-
tude relationship of the form o2 = a/V, + b, where
of) is range variance and V, the measured ampli-
tude. After identification, an inverse, slightly non-
linear function was found. For identification in our
case, an experiment was performed with a station-
ary target at about 1 meter distance. The returned
signal strength was varied systematically with a

Kodak gray scale control patch where 10'000 read-
ings were taken at each of the twenty gray levels.

Opposed to the model in [1], we can observe an
abrupt rise of noise below a certain amplitude
(fig. 1). This reduces our model for range variance
to a constant value, independent on target dis-
tance and amplitude.
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Figure 1. Range standard deviation (y-axis, in
meters) against measured amplitude (x-axis, in
Volts). 10’000 readings, measurements were done
with a Kodak gray scale control patch.

Although this analysis lead to such a simple
result it permits rejection of false or very uncer-
tain readings by means of the amplitude measure-
ments. This is very important since in many
practical cases the sensor exhibits strong depen-
dency upon the surface properties like color and
roughness. Moreover, the Acuity sensor is often
and reproducibly subject to outliers. When the
laser beam hits no target at all, and at normally
occurring range discontinuities it returns an arbi-
trary range value, typically accompanied by a low
signal strength.

2.2 CCD Camera

The vision system consists in a Pulnix TM-9701
full frame, gray-scale, EIA (640 x 480) camera with
an effective opening angle of 54° which sends a
standard RS-170 signal to a Bt848 based frame
grabber. No dedicated DSPs are used in our setup,
all image processing is done directly by the CPU of
the VME card.

A vision task which is intended to extract accu-
rate geometric information from a scene requires a
calibrated vision system. For this a variety of cam-
era parameters including its position and orienta-
tion (extrinsic parameters), image center, scale
factor, lens focal length (intrinsic parameters) and
distortion parameters are to be determined. To cal-
culate a coherent set of intrinsic, extrinsic and dis-
tortion parameters the calibration technique [15]
has been combined with a priori knowledge of fea-
tures from a test field. The procedure is to extract



Figure 2: CCD image of the corridor where the
experiments have been carried out (step 5 of the tra-
jectory). The image is compensated for radial dis-
tortion.

and fit vertical and horizontal lines from the test
field and determine the distortion in the x- and y-
direction. By knowing the 3D position of these
lines in space, the intrinsic, extrinsic and distor-
tion parameters can be determined simulta-
neously.

Due to the particularity of our application, some
simplifications for the final calibration model can
be done. The camera is mounted horizontally on
the robot and the center of projection of the imag-
ing device is at (0,0) in robot coordinates with ori-
entation 0°. Since only vertical edges are
extracted, calibration is needed only in the hori-
zontal direction (x-axis). With that, only few
parameters remain to be modeled: the focal length
C, the image center (c,,c,), and the distortion
parameters ki, k,. This yields equation (1) for
parameter definition

C D:—:“ = X+ x (kg2 + kot | 1)

where x refers to the distorted location, X
= X—=Ce, Yo = Y —Cy, 2= xZ+yZ and x,,, z, are
measures of the test field in camera coordinates.

The angle ¢ of a feature relative to the robot is

finally calculated using equations (2) and (3).
% = X+ X (kyr? + kor™) )

¢ = atan(x/C) 3)

The uncertainties from the test field geometry
and those caused by noise in the camera electron-
ics and frame grabber AD conversion are propa-
gated through the camera calibration procedure
onto the level of camera parameters yielding a 4x4
parameter covariance matrix.

3. Feature Extraction

Geometric environment features can describe
structured environments at least partially in a
compact and exact way. Horizontal or vertical line
segments are of high interest due to the frequent
occurrence of line-like structures in man-made
environments and the simplicity of their extrac-
tion. More specifically, the problem of fitting a
model to raw data in the least squares sense has
closed form solutions if the model is a line. This is
even the case when geometrically meaningful
errors are minimized, e.g. the perpendicular dis-
tances from the points to the line. Already slightly
more complex models like circles do not have this
property anymore.

3.1 Laser Range Finder

The extraction method for line segments from 1D
range data has been described in [3]. A short out-
line of the algorithm shall be given.

The method delivers lines and segments with
their first order covariance estimate using polar
coordinates. The line model is

pcos(¢ —a)—r = 0 @)

where (p, $) is the raw measurement and (a,r)
the model parameters.

Segmentation is done by a relative model fidel-
ity measure of adjacent groups of points. If these
groups consist of model inliers they constitute a
compact cluster in model space since their parame-
ter vectors of the previously fitted model are simi-
lar. Segments are found by comparing this
criterion against a threshold. A hierarchical
agglomerative clustering algorithm with a Mahal-
anobis distance matrix is then applied. It merges
adjacent segments until their distance in model
space is greater than a threshold.

The constraint of neighborhood is removed as
soon as the threshold has been exceeded so as to
fuse non-adjacent segments as well. The clustering
terminates if the same threshold was reached
again. This allows for particular precise reestima-
tions of spatially extended structures like for
example a long wall where objects, doors or other
discontinuities lead to multiple small segments
belonging to this wall.

For the line fitting, the nonlinear regression
equations have been explicitly derived for polar
coordinates minimizing the weighted perpendicu-
lar error from the points to the line. Opposed to a
Kalman filter, more general error scenarios of pos-



sibly correlated measurements can be taken into
account.

An advantage of this method is its generality.
This follows from the fact that all decisions on seg-
mentation and merging are taken in the model
space, independent on the spatial appearance of
the model. Only the fitting step is inherently
model specific and has to provide the parameter’s
first and second moments.

In [7] the segmentation method first detects
homogeneous regions which are basically marked
by unexpected range discontinuities. Identical to
the detection of edges in [1], this is done with a
Kalman filter. Afterwards segments are found by a
widely used recursive algorithm which applies a
distance criterion from the points to their current
homogeneous region. If the maximal distance is
above a threshold, the segment is splitted into two
separate regions restarting the process for them.
The line parameter estimate is finally done with
an information filter. Alike [3] consecutive seg-
ments are merged and reestimated if their
moments exhibit sufficient similarity. In [16] range
discontinuities are equally detected with a Kal-
man filter. They serve directly as segment end
points.

3.2 CCD Camera

If the camera has a horizontal position on the vehi-
cle, vertical structures have the advantage of being
view invariant, opposed to horizontal ones. Fur-
thermore, they require simple image processing
which is important for a real-time implementation
under conditions of moderate computing power.
For several reasons, only the lower half of the
image is taken: better illumination conditions (less
direct light from windows and lamps), the avail-
ability of corresponding feature information to the
one from the laser range finder and more frequent
occurrence of reliable vertical edges.
The extraction steps can be summarized as fol-
lows:
e Vertical edge enhancement: Edge extraction
using a specialized Sobel filter which approxi-
mates the image gradient in the x-direction.

< Non-maxima suppression with dynamic thresh-
olding: The most relevant edge pixels (maximal
gradient) are extracted and thinned by using a
standard method.

= Edge image calibration: The camera model is
applied to the edge image using the previously
determined parameters. The image is calibrated
only horizontally.

= Line fitting: Columns with a predefined number
of edge pixel are labelled as vertical edges. Line
fitting reduces to a 1D problem. Sub-pixel preci-
sion is achieved by calculating the weighted
mean of the non-discrete edge pixel position
after image calibration.
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Figure 3: Extraction of vertical edges. (a): uncali-
brated half image, (b): edge pixels after edge
enhancement, non-maxima suppression and cali-
bration, (c): resulting vertical edges.

This line extraction method is essentially a special
case of the Hough transformation, where the
model is one-dimensional since the direction is
kept constant.

In each abovementioned step, the uncertainty of
the calibration parameters and a constant uncer-
tainty in the x-position of the input image are
propagated. The result is a set of vertical edges
described by their first two moments (¢, oi) .

4. EKF Localization

Under the assumption of independent errors, the
estimation framework of a Kalman filter can be
extended with information from additional sensors
in a straight-forward way. Since this paper does
not depart from the usual use of extended Kalman
filtering and error propagation based on first-order
Taylor series expansion, most mathematical



details are omitted. Only aspects which are partic-
ular are presented. Please refer to [2][3][5] or [11]
for more profound treatments.

The prediction step uses an a priori map of the
environment which has been measured by hand.
Each feature p; in the map (i.e. lines and vertical
edges) received constant values for their positional
uncertainty, held by the covariance matrix WCL'],
where superscript W denotes the world frame.
Together with the predicted robot pose uncertainty
P(k+1|k), it is propagated into the according sen-
sor frame for prediction. Additionally, the covari-
ance matrix RCS accounts for uncertain robot-to-
sensor frame transformations. The innovation
covariance matrix of prediction 2 and observation
z; at time index k+1 is then

Sj(k+1) = Oh IP(k+ k) A" +0n! e mn)’
+ Ohl! e mhl" + Ry(k + 1), (5)

where R;(k+1) is the first order covariance esti-
mate of observation z;, Oh{', . the measurement
Jacobian with respect to the uncertain vectors
X, p, s of the nonlinear measurement model h(.)
relating the system state x to the measurements
for prediction z .

For matching, an iterative strategy has been
implemented where each step includes (i) match-
ing of the current best pairing, (ii) estimation and
(iii) re-prediction of features not associated so far.
As in [13], line segments are integrated first since
they are mutually more distinct, leading less often
to ambiguous matching situations.

Always the current best match is searched
among pairs of predictions z and observations z;
which satisfy the validation test

(z-2)S; (z-2)" < X2, (6)

where Xi,n is a threshold reflecting a probability
level a chosen from a chi-square distribution with
n degrees of freedom. Matching observed seg-
ments to predicted lines from the map is done in
the (a, r)—model space, therefore n = 2. With ver-
tical edges n = 1 since the ¢ —model space is one-
dimensional.

The criterion of pairing quality is different for
segments and vertical edges. ‘Best’ for line seg-
ments means smallest observational uncertainty
among the candidates satisfying (6) — not smallest
Mahalanobis distance. This renders the matching
more robust against small spurious line segments
which have been extracted in groups of outliers
occasionally occurring with our sensor (chapter 2).

For several reasons vertical edges are much
more difficult to associate [13][14]. For example,
multiple, closely extracted vertical edges (see
fig. 3) are often confronted with large validation
regions around the predictions. Accordingly, ‘best’
for vertical edges means unique match candidate
with smallest Mahalanobis distance. When there
is no unique pairing anymore, candidates with
multiple observations in the validation region are
accepted and chosen according to the smallest
Mahalanobis distance of the their closest observa-
tion.

5. Implementation and Experiments

5.1 The Robot Pygmalion

Our experimental platform is the robot Pygmalion
which has been recently built in our lab (fig. 4). Its
design principles are oriented towards an applica-
tion as service or personal robot. Long-term auton-
omy, safety, extensibility, and friendly appearance
were the main objectives for design. With its
dimensions of about 45x45x70 cm and its weight of
55 kg it is of moderate size and danger opposed to
many robots in its performance class. The system
runs the deadline-driven, hard real-time operating
system XOberon [6].

Figure 4: Pygmalion,
the robot which was
used in the experi-
ments. It is a VME
based system with a
six axis robot con-
troller. The proces-
sor board carries
currently a PowerPC
at 100MHz. Besides
wheel encoders and
bumpers, the sen-
sory system includes
the laser range
finder and the CCD
camera discussed in
the second chapter.

5.2 Experimental Results

Long corridors notoriously recur in mobile robot-
ics. They are, however, an excellent benchmark for
the localization system of a service robot, since
they occur often in realistic application scenarios
and contain the difficulty to stay localized in the
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Figure 5: Predictions and observations in the robot
frame before estimation at step 14 of the test trajec-
tory. All line segments and three vertical edges
have been matched (to predictions 145, 175, 180).

Figure 6: Update result-
ing from the matches in
fig. 5. The Kalman fil-
ter corrects the robot
about 5 cm backwards,
establishing good cor-
respondence of observa-
tion and prediction of
the three matched verti-
cal edges in fig. 5. Thus they allow for an update
also in corridor direction; the state covariance
matrix P(k+ 1|k + 1) stays bounded.

P(k+1[k)

TR

direction of travel. In order to demonstrate the
performance of our multisensor localization sys-
tem, we chose the corridor environment shown in
fig. 2, 7 and 8 as benchmark. Two experiments
have been conducted where the robot drove an
overall distance of more than 1 km. In both experi-
ments the vehicle followed the trajectory depicted
in fig. 7 and 8 with a length of about 78 m.

The robot moved autonomously in a stop-and-go
mode, driven by a position controller for non-holo-
nomic vehicles [4]. A graph with nodes at charac-
teristic locations was built which allows for global
planning in the map. No local navigation strategy
accounting for unmodeled objects was active. Since
the angle of the laser range finder has to be cali-
brated at each system startup by measuring the
four vertical profiles (see fig. 4), there is a angular
uncertainty of the robot-to-sensor frame transfor-
mation. This is modeled by setting fCs = o5 with
O, reflecting 1.5° in equation (5). For the vision

system RCSV is set to O, since this uncertain trans-
formation is already captured by the camera cali-
bration and its uncertain parameters (chapter
2.2).

From the figures it can be seen that the corridor
is actually well-conditioned in the sense that many
structures exist which can be used for updates in
the direction of travel. In the first experiment all
these structures have been removed from the map.
Only in the two labs and at the upper corridor end
the map was left unchanged. In fig. 7 and 8 mod-
eled structures are in black, unmodeled ones in
gray. It is attempted to demonstrate the need of
additional environment information, if, due to a
difficult working area, information of one type is
not sufficient for accomplishing the navigation
task.

Figure 7 shows one of three runs which were
performed with the laser range finder only. As to
be expected during navigation in the corridor,
uncertainty growed boundless in the direction of
travel. Inaccurate and uncertain position esti-
mates lead regularly to false matches and incor-
rect pose updates in front of the lower lab.

In the second run of the first experiment (fig. 8,
one of three runs shown), the vision system was
able to ameliorate precision and reduce uncer-
tainty to an uncritical extent. This is illustrated in
fig. 5 and fig. 6, where for one of the corridor situa-
tions (step 14), predictions and extraction results
are displayed in the robot frame before estimation.
The three matched vertical edges allow for a full
update. The task could always be finished. The
precision at the endpoint was typically in a sub-
centimeter range, showing a slight temperature
dependency of the Acuity sensor.

In the second experiment, the contribution of
monocular vision to the reduction of estimation
uncertainty has been examined. The same test
path was travelled five times with the laser range
finder only and five times with both sensors. The
map was complete, i.e. no structures had been
removed. The resulting averaged error bounds are
shown in fig. 9. In fig. 10 the mean numbers of pre-
dictions, observations and matchings at the 47
steps of the test path are presented, and table 1
briefly quantifies the results.

The resulting error bounds in figure 9 and their
overall means in table 1 show that, compared to
the laser-only case, the multisensor system partic-
ularly contributes to the reduction of uncertainty
in the vehicle orientation. This although the num-
ber of matched vertical edges is relatively low due
to their infrequent occurrence in our map.
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Figure 7: Run with laser
range finder only. All lines
which would allow for an
update in the corridor direc-
tions have been removed
from the map. Modeled
environment features are in
black.

At each of the 47 trajectory
steps, the robot is depicted
with an ellipse reflecting the
99.9% probability region of
the posterior state covari-
ance matrix P(k+1/k+1)
for x and y. The axis
dimension is meter.

The result is typical. False
matches due to great posi-
tion errors and extensive
uncertainty at the lower cor-
ridor end vyield incorrect
estimates. The robot is lost.
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Figure 8: Run with laser and
vision. Vertical edges have
been added to the map in
fig. 7.

The pose uncertainty stays
bounded during navigation
in the corridor. Only moder-
ate corrections at the upper
and lower corridor end are
necessary; the robot accom-
plishes its task and returns
safely to the start point.
Filled objects in light gray
(doors and cupboards on the
left side) are barely visible
for the laser range finder.
They have a shiny, green sur-
face and turned out to be

almost  perfect specular
a2 reflectors for the infrared
laser.
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Figure 9: Averaged 20 —error bounds of frontal (a),
lateral (b) and angular (c) a posterior uncertainty
during the 47 steps of the test trajectory. Five runs
have been made for each mode. Solid lines: laser
range finder only, dashed lines: laser and vision.

15 T

0 I I I I I I I I

Figure 10: Averaged number of predictions (--),
observations (-—) and matches (-=-) for line seg-
ments (a) and vertical edges (b). See also table 1.

The average execution times express overall
durations and reflect the full CPU load including
sensor acquisition, low-level controllers and com-
munication. No special code optimization has been
done.

6. Discussion

Experience with earlier implementations [2]
showed that on-the-fly localization during motion
is not merely an option for good looking demon-
strations. It augments the robustness against
many factors because it brings the update rate
towards a better ratio to the dynamics of the Kal-
man filter variables. Stop-and-go navigation with

laser laser and vision
20 trontal 5.191 cm 4.258 cm
20 ateral 1.341cm 1.245 cm
28 angular 1.625° 0.687°
n/n, 3.53/- 3.51/1.91
Texe 377 ms 1596 ms

Table 1: Overall mean values of the error bounds,
the number of matched line segments n, and
matched vertical edges n,, and the average
localization cycle time t.,..

long steps (like at the lower corridor end in fig. 7)
causes very uncertain predictions, making the
matching problem difficult for any feature. On the
other hand, on-the-fly localization with more
updates per distance travelled produces smaller
validation regions and thus, diminishes the effect
of a poorly calibrated odometry and an inadequate
model for nonsystematic odometry errors.

Matching vertical edges is especially error-prone
due to their frequent appearance in groups (fig. 3).
With large validation regions caused by very
uncertain pose predictions, false matches have
been occasionally produced. But the effect of these
incorrect assignments remain weak since these
groups are typically very compact. A possible rem-
edy is to exploit the prior knowledge from the map
and to try to ‘correlate’ patterns of edges to the
observation. Instead of independently matching
single observations to single predictions, the obser-
vation pattern will be forced to match a similar
constellation of predicted edges [10][12].

Furthermore, for the vision system, the large
validation regions are contrasted by observations
whose uncertainties are very small in comparison.
From the experiments we conclude that it would
be more relevant to model an uncertain robot-to-
sensor frame transformation to account for vibra-
tions and uneven floors, i.e. alike RCS1 setting
"Cs,# 0 in equation (5).

7. Conclusions and Outlook

It could be demonstrated that the presented multi-
sensor setup allows for more robust navigation in
critical localization situations like long corridors.
The permanent occurrence of features of a specific
type becomes less important. The experiments
showed furthermore that, compared to the laser-
only case, already a moderate number of matched



vertical edges contribute to an important reduc-
tion of estimation uncertainty, especially in the
vehicle orientation.

By reducing the problem of camera calibration
and edge extraction to an appropriate degree of
specialization, the computational complexity could
be kept low so as to have an applicable implemen-
tation on a fully autonomous system.

Further work will focus on more efficient imple-
mentations for on-the-fly localization during
motion. Although ambiguous matching situation
will be expected to appear less often, more sophis-
ticated strategies could be envisaged [5][12].
Finally, more complex fusion scenarios of range
and vision features could be addressed as well.
Detection of high-level features for concise scene
descriptions [3] can be a starting point for topol-
ogy-based navigation schemes.
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