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Abstract— Moving objects are present in many robotic appli-
cations. An accurate detection and motion estimation of these
objects can be crucial for the success and safety of the robot and
people surrounding it. This paper presents a new probabilistic
framework for clustering dependent or relational data, applied
to the problem of motion clustering and estimation. While
conventional techniques such as scan differencing perform well
in many cases, they usually assume that a good pose estimate
is available and fail when points belonging to dynamic objects
show some overlap in consecutive readings. The technique
proposed, CRF-Clustering, by explicitly reasoning about the
underlying motion of the object, is able to deal with poor
initial motion estimate and overlapping points. Moreover, it
is able to consider the dependencies between neighbor points
in the scans to reduce the noise in the clustering assignment.
The model parameters can be estimated from labeled data in a
statistically sound learning procedure. Experiments show that
CRF-Clustering is able to detect moving objects, cluster them
and estimate their motion.

I. INTRODUCTION

When operating in urban environments, detection and
correct motion estimation of cars, people and other dynamic
objects can be essential for the safety of the robot and
humans nearby. However, only the detection of moving
objects is not enough for reliable navigation in complex
environments. It is also necessary to estimate the motion
pattern of these objects so as to predict their positions ahead
in time, and avoid collisions during the decision making
process. Combined, these two tasks can be difficult specially
considering the variability of motion patterns. For example,
people move in a very nonlinear manner and can rotate and
translate without restrictions. Cars have a smoother motion
pattern but are much faster, therefore being difficult to track
when at high speed.

Most of the existing robotic systems used nowadays
possess ranging sensors such as laser range finders which
can be employed to estimate the robot’s motion assuming
the environment is static. Techniques such as the Iterative
Closest Point (ICP) [20] estimate the motion of the robot
by minimizing the residual distance between points in a
reference laser scan and associated points in another scan
of the sequence. In the presence of dynamic objects, ICP
might fail since the presence of spurious dynamic objects
can influence the computation of the robot movement if
the environment is assumed static. To tackle this problem,
current techniques [7], [14], [19] try to detect the parts of
the laser scan that are coming from dynamic objects and
eliminate them from the robot’s motion estimation. Despite
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Fig. 1. A sequence of three consecutive scans obtained by our car facing
an intersection while another one is passing by. The different colors indicate
different scans. The moving car is depicted in the red square.

the importance of the problem, most of the techniques
proposed thus far rely deeply into heuristics and manual
parameter tuning. This can compromise the robustness of
the method when unexpected events take place or when the
robot is required to operate in a new environment.

In this paper we present a technique for detecting and esti-
mating the motion of dynamic objects in urban environments
based on laser range data. A typical situation is depicted in
Figure 1, where the robot is facing an intersection while a car
is passing by. We can see that, despite the moving object, the
static part of the map is correctly aligned and the car detected
(red box). In contrast to scan differencing, we cast the de-
tection problem as a clustering procedure, where associated
points in consecutive laser scans are clustered according to
their motion patterns. Common clustering techniques such as
EM [5] and K-Means [6] assume that points in the data set
are independent. Since there is a strong spatial correlation
between laser points located nearby, this assumption can
severely jeopardize the consistence of these procedures.
Frequently, laser returns are generated by rigid objects, thus
obeying the Gestalt principles of proximity and common
fate [8]. Semi-supervised clustering [4] addresses the in-
dependent data assumption by enforcing several constraints
among cluster assignments. However, these constraints are
usually given by an expert and not extracted from the data.
To overcome this limitation, we propose a semi-supervised
clustering procedure based on Conditional Random Fields
(CRFs) [9]. CRFs are probabilistic graphical models orig-
inally proposed for classification of sequential data. These
models can be learned discriminately, eliminating the need to
multiply conditional distributions with prior distributions as
in generative models such as Markov Random Fields (MRFs)



and Hidden Markov Models (HMMs). This significantly
simplifies the modeling process and allows the specification
of more complex constraints to capture particular aspects of
the data. Furthermore, our method is able to determine the
number of clusters and the corresponding motion patterns
while simultaneously computing their parameters.

The paper is organized as follows: previous works on
detecting moving objects and estimating their motion pat-
terns are discussed in Section II. We begin introducing our
method by first reviewing CRFs in Section III. Our algorithm
is detailed in Section IV with discussions on finding the
right number of clusters. We provide extensive experimental
evaluation on urban data in Section V, where the algorithm
is also compared to an existing technique. Conclusions and
ideas for future work are presented in Section VI.

II. RELATED WORK

The detection and tracking of moving object (DATMO)
problem has been extensively studied [2] for several decades.
The problem has been addressed from different scenarios and
using different sensors. In terms of related works, we will
focus our attention to the detection of moving objects from
a moving platform and using a laser range finder.

A first class of algorithms addresses the detection problem
only in terms of separating the data into two main clusters:
static and dynamic. The dynamic points are then filtered
out to obtain a better motion estimation for the moving
platform. Hähnel et al. [7] presented an EM based approach
for detecting moving points in range data. The algorithm
maximizes the likelihood of the data using a hidden variable
expressing the nature of the points (static or dynamic). This
is an offline algorithm which is not suitable for real time
applications. Rodriguez-Losada and Minguez [14] showed
how data association can be improved for the ICP algorithm
in the presence of dynamic objects. They introduced a new
metric which better reflects the real motion of the robot.
However, their approach does not distinguish moving object
from outliers. The approach of Wolf and Sukhatme [19]
maintains two separate maps for the static and dynamic part
of the environment. The maps are updated using a modified
version of the occupancy grid framework which also infers
the nature of the points (static or dynamic).

Another class of algorithm focuses also on the object
segmentation and tracking. Anguelov et al. [1], [3] use
simple differencing for detecting the moving points and then
apply a modified EM algorithm for clustering the different
objects. However, the algorithm needs the number of objects
as input and does not consider interactions between neighbor
points. In [16], a feature based approach is used to detect
the moving objects. These objects are then tracked using
a joint probabilistic data association filter (JPDAF). The
features used are the local minima of the laser data. While
this feature works well in the presence of people, it is not
the case of larger moving objects such as cars, buses and
so on. Wang et al. [18] defined an integrated solution for
the mapping and tracking problem: static points are used
for mapping while dynamic ones for tracking. The detec-
tion and segmentation of dynamic points is based on data

differencing and consistency-based motion detection [18].
Points are classified in static and dynamic and clustered in
segments. When a segment contains enough dynamic points
is considered dynamic. Montesano et al. [11] improved the
classification procedure described in [18] by jointly solving
it in a Bayesian framework. Moreover, they integrated the
mapping and tracking within a path planner for indoor
navigation. Although, most of these approaches focuses on
how to track the different objects under different hypothesis,
the detection part is mainly based on different heuristics. The
main technique used is based on scan differencing, where
points are considered dynamic if there is some inconsistency
between two consecutive scans (or a map and a scan). The
detection routine is only able to observe the actual position of
the object (given a stable reference point) and the velocities
are computed by the tracking algorithm.

In this paper we address the problem in a more formal
way: points are clustered according to their inherent motion
while simultaneously computing their motion parameters.

III. CONDITIONAL RANDOM FIELDS

Conditional Random Fields (CRFs) are undirected graph-
ical models developed for labeling sequence data [9]. CRFs
directly model the conditional distribution over the hidden
variables x given observations z. Due to this structure, CRFs
can handle arbitrary dependencies between the observations
z, which gives them substantial flexibility in using high-
dimensional feature vectors.

The nodes in a CRF represent hidden states, denoted
x = 〈x1,x2, . . . ,xn〉, and data, denoted z. The nodes
xi, along with the connectivity structure represented by
the undirected edges between them, define the conditional
distribution p(x|z) over the hidden states x. Let C be
the set of cliques in the graph of a CRF. Then, a CRF
factorizes the conditional distribution into a product of clique
potentials φc(z,xc), where every c ∈ C is a clique in the
graph and z and xc are the observed data and the hidden
nodes in the clique c, respectively. Potentials φc(z,xc) are
described by log-linear combinations of feature functions fc,
i.e., φc(z,xc) = exp

(
wT
c · fc(z,xc)

)
, where wT

c is a weight
vector, and fc(z,xc) is a function that extracts a vector of
features from the variable values. Using feature functions,
the conditional distribution becomes

p(x | z) =
1

Z(z)
exp

{∑
c∈C

wT
c · fc(z,xc)

}
, (1)

where Z(z) =
∑

x

∏
c∈C φc(z,xc) is the normalizing parti-

tion function.
Inference in CRFs can estimate either the marginal dis-

tribution of each hidden variable xi or the most likely
configuration of all hidden variables x (i.e., MAP estima-
tion), as defined in (1). Both tasks can be solved using
belief propagation (BP) [12], which works by sending local
messages through the graph structure of the model. Each
node sends messages to its neighbors based on messages it
receives and the clique potentials, which are defined via the
observations and the neighborhood relation in the CRF.



Fig. 2. Graphical representation of the CRF-Clustering model. The hidden
states xi indicate the cluster number. The observations zi correspond to the
local features. Rj and Tj indicates rotation and translation of the cluster j.

The weights of the feature functions can be learned
discriminatively by maximizing the conditional likelihood of
labeled training data, using a numerical gradient algorithm.
Unfortunately, this optimization runs an inference procedure
at each iteration, which can be intractably inefficient in
our case. We therefore resort to maximizing the pseudo-
likelihood of the training data, which is given by the sum
of local likelihoods p(xi | MB(xi)), where MB(xi) is the
Markov blanket of variable xi: the set of the immediate
neighbors of xi in the CRF graph. In our approach, we
use unconstrained L-BFGS [10], an efficient gradient descent
method. The key advantage of maximizing pseudo-likelihood
rather than the likelihood is that the gradient can be computed
extremely efficiently, without running an inference algorithm.

IV. CRF-CLUSTERING

In this section the CRF is extended to address the problem
of semi-supervised clustering. Although we describe the
methodology for the specific case of motion clustering, the
technique is general and can be applied to any clustering
problem where the data has some kind of dependence.
See [17] for a more general description of CRF-Clustering.

In the following, we will explicitly use the rotational R and
translational T parameter of the motion vector. Moreover,
in the clustering framework, no distinction is made among
the robot and the other moving objects. After clustering, we
compute the Mahalanobis distance between the odometry
reading and the estimated object motions and classify the
motion with the lowest distance as the robot motion.

A. Model Definition

CRF clustering can be understood as a CRF model where
local potentials represents distance functions between points
and clusters and pairwise potentials represent constraints
among different clusters. Figure 2 shows the graph represen-
tation of the model (we use blank nodes to represent hidden
variables and grey nodes to represent observed variables.).
The hidden variables xi represent the cluster assignment
and the hidden variables Rj and Tj represent rotation and
translation respectively, for each cluster in the model. The
observations zi are computed from the laser scan pair and
are described in the section below.

The inputs to the algorithm are two scans, a reference
scan g and second scan s. The objective is to transform
parts of s according to the clustering assignments in such
a way that the distance between the points in g and the
transformed points in s is reduced. Therefore, for every point

si, a hidden variable xi is created indicating the clustering
assignment. CRF clustering can be trained as a normal
CRF using pseudolikelihood. In our experiments, the model
parameters were learnt using this technique from a training
data set.

B. Local Feature
The current implementation of CRF clustering has one

local feature. It is also possible to add more local features
describing, for example, the geometry of sets of points or
even appearance from vision data. However, to reduce the
inference time we consider only the local feature described
below:

Distance between laser points: This feature measures the
distance between points in the laser scan g and the associated
points in the laser scan s after being rotated and translated
according to the cluster assignments. As different parts of s
are assigned to different clusters this transformation does not
preserve the original shape of s. Instead, it tries to break s
into parts with the same motion pattern. The equation below
describes how this feature is computed for every pair of
points i:

fdist (xi, si, gi) = ‖Txi
+Rxi

si − gi‖2 , (2)

where xi defines the cluster j the particular point i belongs
to. Rj and Tj are computed from the points assigned to the
cluster j by minimizing the sum of distances between points
s and corresponding g:

Rl, Tl = arg min
R,T

∑
si,gi|xi=l

‖T +Rsi − gi‖2 . (3)

Fortunately, there is a closed-form solution for the ex-
pression above, which can be used to compute Rl and Tl
efficiently [20].

C. Pairwise Features
The pairwise features ensure consistency of the clustering

assignments by incorporating neighborhood information. For
example, if a pair of points i is assigned to cluster l it is very
likely that the neighbor pair j will also be assigned to the
same cluster. This assumption is true whenever pairs i and
j belong to the same rigid object. We define three pairwise
features with different properties as follows:

Neighbor Feature: This is a simple pairwise feature
returning two possible values. These values are parameters
of the model, estimated during learning. More precisely, the
feature is defined as:

fng (xi, xj) =
{
λ1, if xi = xj
λ2, if xi 6= xj

(4)

where λ1 and λ2 are the parameters of the feature.
Weighted Neighbor Feature: This feature is similar to

the Neighbor Feature except that the output is weighted by
the Euclidian distance between the neighbor points. The idea
is to capture the notion that neighbor points further away are
less dependent than neighbor points nearby.

fWng (xi, xj , si, sj) =
{
λ1/∆, if xi = xj
λ2/∆, if xi 6= xj

(5)



where ∆ is the L2 distance between points si and sj .
Stiffness Feature: This feature tries to enforce stiffness for

points that belong to the same cluster. The feature computes
the difference of distances between neighbor points before
and after the transformation given by the cluster assignment.
The idea is that if the points belong to the same cluster,
their distances must be preserved after the transformation.
This feature can be written as:

fst =
∥∥(si−sj)−

[
(Txi

+Rxi
si)−

(
Txj

+Rxj
sj
)]∥∥2

(6)

D. Inference Procedure

Performing inference in this model is different from per-
forming inference in a normal CRF. Since the values of the
observations change with the hidden states normal BP cannot
be applied. Instead, we formulate a different message passing
procedure where with an initial random cluster assignment,
the local features are computed. Messages are then prop-
agated back and forward in the chain model to estimate
new values for the hidden variables x. The new cluster
assignments x are used to compute new cluster parameters R
and T . Features are recomputed with these new parameters
and we iterate this procedure until convergence.

E. Computing the Number of Clusters

One of the interesting properties of our CRF-Clustering
model is that it is able to deal with an unknown number of
clusters. This is usually an hard problem and is addressed
using some information criterion (e.g. BIC, AIC, MDL)
to trade-off model complexity and fitness to the data. In
practice, those methods penalize the likelihood function with
an additive term that represents the complexity of the model.
In CRF-clustering, the penalizing term is naturally defined
by the pairwise potentials, as can be seen if we look at the
logarithm of the CRF-Clustering distribution

log p(x|z) =

const.︷ ︸︸ ︷
− logZ(z) +

Likelihood︷ ︸︸ ︷∑
i

wT
distfdist(·) +

+
∑
i

∑
j

[
wT

ngfng(·) + wT
WngfWng(·) + wT

stfst(·)
]

︸ ︷︷ ︸
Penalizer

(7)

where the weights, w, are learned from training data.
It is worth to notice, however, that the penalizing terms

only involve the costraints defined from the graph structure
used. In a chain structure, it can happen that points that
should belong to the same cluster are not connected, resulting
in two different assignments. In order to prevent this, we
developed a criterion that allows us to merge similar clusters
together. The criterion is inspired by the “effective number
of particles” heuristic used in particle filtering, and is called
effective number of clusters. By using the probability of
the cluster assignment of the CRF, pc, we can compute the
effective number of clusters a point belongs to as

Neff =
1∑
p2
c

. (8)
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Fig. 3. Convergence of CRF clustering. The first three pictures show the
likelihoods of cluster assignments. Dark red represents higher likelihoods
and dark blue lower likelihoods. The last picture shows the merging
procedure, which correctly merged cluster 1 and 16 together.

We then compute for each cluster the average number of
cluster assignments for its points. If it is above 1.7 that
cluster is eliminated and its points merged with the second
best cluster; the cluster that contains most of the point
assignments. Experiments show that we are able to obtain
the exact number of clusters, regardless how we initialize
the algorithm.

V. EXPERIMENTAL EVALUATION

In this section we analyze convergence properties of the
algorithm and compare our algorithm to K-Means and to the
Consistency-Based Detector (CBD) [18] for the problem of
motion clustering 1.

Experiments were performed in an urban environment with
a car and consist of 30 pairs of laser scans selected from
a trajectory of about 2 km. The data reflect typical driving
situations such as cars overtaking other cars, crossing by and
moving on the opposite lane. For each pair, the scans were
taken at 2m to 4m apart which corresponds to the vehicle
motion during the data acquisition. Laser points for each
pair were manually assigned to different clusters for ground
truth purposes. To evaluate how the approach deals with
imperfect data associations between laser scans, we ran our
algorithm with both the true, manually generated associations
between laser points (CRF-T), and the associations computed
automatically via CRF-Matching (CRF-M) [13].

Once we obtained a clustering solution, we can compare it
with the ground truth assignments. To evaluate the clustering
performance, we used the V-measure [15], an external,
entropy based, cluster evaluation measure. This measure, V ,
is the harmonic mean of homogeneity H and completeness
C of the cluster assignments. Homogeneity reflects the fact
that points in one cluster should belong only to one class
and completeness reflects the fact that points in one class
should be associated only to one cluster. The V-measure is

1CRF-Clustering also estimates the motion for detected objects which is
not directly possible with other methods without additional techniques.
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Fig. 4. Example of consistency-based (CBD) results (left) and CRF-Clustering results (right). Red dots indicate the current scan, blue dots the previous
one (mostly hidden). The colored markers around dots indicate the cluster assignments. CBD fails to detect the moving object (all points in the same green
cluster), where CRF-Clustering doesn’t The bounding box on the right image indicates the moving object being correctly detected.

then computed as the harmonic mean of homogeneity and
completeness

Vβ =
(1 + β)HC
(βH) + C

(9)

where β is a blending factor. For β > 1 completeness
is weighted more strongly and for β < 1 homogeneity
is weighted more strongly. In our experiment we were
interested in both, so we set the blending factor to 1.

A. Convergence Properties

In most of the experiments the algorithm converged be-
tween 3 and 7 iterations. One particular case is illustrated
in Figure 3. To initialize the algorithm, we segment the
scan based on a distance heuristic. The pictures show how
this initial segmentation is then refined by CRF-Clustering,
while selecting the correct number of clusters. The first three
pictures show the likelihood of each laser beam assigned
to the clusters (dark red is high likelihood, dark blue is
low likelihood). Based on the likelihoods, the last picture
shows how the merging procedure described before is able
is combine different clusters to obtain the correct solution.

B. Comparison with Consistency-based Detection

In this section we compare CRF-Clustering with the
consistency-based detector (CBD) introduced in [18]. The
CBD algorithm is a heuristic-based algorithm for detecting
moving objects in range data. The main concept behind the
algorithm is that static objects are consistent about the free
space while dynamic objects are not. The major drawback
of this algorithm is that it is based on two main assumptions:
a good estimate of the robot displacement is available; the
object movements are orthogonal to the observed shape.
While the first assumption often holds in real situations
(use of inertial units, GPS, scan matching), the second is
more subtle and can create problems especially in outdoor
environments.

Figure 4 shows a typical example in which the second
assumption is violated. The robot is approaching an inter-
section while another car is moving in front of it. We see
(left) that CBD is not able to detect the car. That is because
most of the car measurements are not classified as dynamic
due to the big overlap. On the other hand, CRF-Clustering
(right) is able to correctly detect the moving car by clustering
laser points according to their motion pattern.

CBD K-Means CRF-T CRF-M
mean std mean std mean std mean std

H 0.821 0.279 0.415 0.272 0.983 0.049 0.862 0.052
C 0.893 0.298 0.950 0.065 0.990 0.029 0.903 0.031
V 0.850 0.290 0.537 0.247 0.986 0.039 0.886 0.041

TABLE I
COMPARISON BETWEEN CBD, K-MEANS AND CRF CLUSTERING

Table I shows a numerical comparison between the two
techniques. Mean and standard deviation for homogeneity,
completeness and V-measure are presented for the different
approaches. CRF-Clustering obtains better results in both
cases, with true data association (CRF-T), and data asso-
ciation using CRF-Matching (CRF-M).

C. Comparison with Modified K-Means

In this section we compare CRF-Clustering with a mod-
ified version of the K-Means algorithm. K-Means is a well
known and standard algorithm for clustering data points
into k partitions. However, K-Means cannot be directly
applied to our motion clustering scenario. The problem is
that we are clustering points (which are a pair of 2D objects)
according to their motion (which is a 3D quantity). The
first modification lies in the way the cluster centroids are
computed. In our case, the centroids represent the rigid body
transformation underlying the object movement (rotation and
translation), which is computed according to (3). Once the
centroids are obtained, we associate point i to the cluster
which minimize

argmin
j
‖gi − (Tj +Rjsi)‖2 (10)

where (gi, si) is the point pair, Tj and Rj are translation and
rotation of the j-th motion cluster.

The main problem of K-Means and similar algorithms is
that they do not consider relations between points in the data.
More specifically, they assume that points are independent.
Discarding this information can lead to very noisy and
inhomogeneous clustering results. This is clearly depicted
in (5), where we compare the result of K-Means and CRF-
Clustering on a typical case. As can be seen, K-Means (left)
produces a very noisy result, while the result provided by
CRF-Clustering (right) is more accurate and homogeneous.
Both algorithms were initialized with the maximum number
of dynamic objects (three in our case) and we can see
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Fig. 5. Modified K-means results (left) and CRF-Clustering results (right). The different symbols indicate the cluster assignment and the red dots indicate
the current scan. It can be noticed that the clustering solution found by K-Means is significantly noisy (various different clusters). This is avoided with
CRF-Clustering with the use of the neighborhood dependencies. The bounding box on the bottom image indicate the moving object being correctly detected.

that CRF-clustering is able to detect the correct number of
clusters.

Finally, Table I shows a numerical comparison between the
two techniques on the data collected by our vehicle. Note that
K-Means results are based on the manually generated ground
truth associations.

VI. CONCLUSION AND FUTURE WORKS

We have introduced CRF-Clustering, a novel technique
for clustering dependant data into homogeneous partitions.
Although it is a general clustering algorithm, in this paper
we show its ability to detect and classify moving objects in
range data. Existing approaches in moving object detection
as CBD are mainly based on scan consistency, classifying
points as dynamic if they violate the free space of the map.
On the contrary, our technique explicitly reasons about the
underlying motion of the object, thus being more effective.
By using a Conditional Random Field, our approach is able
to consider relations between different points in the scans
and different properties of the moving objects. Moreover,
our algorithm is also able to estimate the underlying motion
of the different objects, which can be used as input to a
tracking algorithm.

Our experiments show that CRF-Clustering performs bet-
ter than Consistency-based techniques, specially in situations
where the motion of the object is not orthogonal to the
observed shape. We also showed that this problem is not
trivial from a clustering perspective. Classical algorithms,
such as K-Means, fail to provide homogeneous cluster, as
they assume data points are independent.

In future works we will investigate various extensions to
the CRF-Clustering algorithm. We plan to integrate appear-
ance features for better clustering objects that share the same
motion and also the use of other sensors as cameras. Finally,
we plan to integrate CRF-Clustering within a Simultaneous
Localization and Mapping framework, in order to obtain au-
tonomous navigation and mapping in dynamic environments.
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