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Real-Time Object Tracking and Classification Using a Static Camera

Swantje Johnsen and Ashley Tews

Abstract— Understanding objects in video data is of partic-
ular interest due to its enhanced automation in public security
surveillance as well as in traffic control and pedestrian flow
analysis. Here, a system is presented which is able to detect
and classify people and vehicles outdoors in different weather
conditions using a static camera. The system is capable of
correctly tracking multiple objects despite occlusions and object
interactions. Results are presented on real world sequences and
by online application of the algorithm.

I. INTRODUCTION

It is important for vehicle operators around worksites to
be aware of their surroundings in terms of infrastructure,
people and vehicles. When an operator observes an object
moving in a way that will impact on their operations,
they take the necessary steps to avoid undesired interaction.
Their response depends on recognising the type of object
and its track. This skill is also important for autonomous
vehicles. An autonomous vehicle needs to be able to react
in a predictable and rational manner, similar to or better
than a human operator. Onboard sensors are the primary
means of obtaining environment information but suffer from
occlusions. However, offboard sensors such as webcams
commonly deployed around worksites can be used for this
purpose. We present our system for offboard dynamic object
tracking and classification using a static webcam mounted
outside a building that monitors a typical open work area.
As the preliminary step towards integrating the extracted
information to improve an autonomous vehicle’s situational
awareness, information about the objects such as location,
trajectory and type is determined using a tracking and
classification system. The system consists of several existing
subsystems with improvements in the detection and classifi-
cation phases. The system is capable of working in different
weather conditions and can distinguish between people and
vehicles by identifying recurrent motion, typically caused
by arm or leg motion in the tracked objects. Tests were
conducted with different types and numbers of vehicles,
people, trajectories and occlusions with promising results.

II. RELATED WORK

The common architecture of classification systems consists
of the following three main steps: motion segmentation,
object tracking and object classification [1] [2]. The steps
are described as follows.
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In the motion segmentation step, the pixels of each moving
object are detected. Generally, the motion segmentation con-
sists of background subtraction and foreground pixel segmen-
tation. Stauffer and Grimson [3] use the mixture of Gaussians
to perform background subtraction and apply a two-pass
grouping algorithm to segment foreground pixels. Simple and
common techniques are based on frame differencing [4] or
using a median filter [5]. In this work a technique based on
the Approximated Median Filter [6] was used. Better results
were obtained by introducing a step factor in the filter.

Following background subtraction, the mobile objects are
tracked. Tracking of objects is the most important but error
prone component. Problems arise when objects of interest
touch, occlude and interact with each other, and when objects
enter and leave the image. Israd and Blake [7] introduced a
method termed CONDENSATION to track objects. Chen
et al. [8] construct an invariant bipartite graph to model
the dynamics of the tracking process. Stauffer and Grimson
[3] use a linearly predictive multiple hypotheses tracking
algorithm. Yanget al. [4] use a correspondence matrix and
a merging and splitting algorithm to relate the measured
foreground regions to the tracked objects. Many algorithms
have been proposed in the literature, but the problem of
multiple interacting objects tracking in complex scene is still
far from being completely solved. Model based algorithms
[9] are computationally more expensive, because the number
of parameters to estimate the model is usually large. They
are also sensitive to background clutter. Overall, many of
those algorithms can only deal with partial object occlusions
for a short duration and fail to deal with complete object
occlusions.

In the classification step, the object type is determined.
Classification of 3-dimensional moving objects from 2-
dimensional images for known object classes is a highly
complex task. Toth and Aach [10] use a feed-forward neu-
ral network to distinguish between human, vehicles, and
background clutters. Rivlinet al. [11] use a Support Vector
Machine to distinguish between a vehicle, a human and
an animal. Zhanget al. [2] distinguish between cars, vans,
trucks, persons, bikes and people groups. They introduced the
error correction output code as a classifier. These techniques
need to be trained via test sequences of the objects. Javed
and Shah [1] produced an algorithm that does not need to
be trained.

III. SYSTEM OVERVIEW

A system that observes an outdoor environment by a single
static camera is developed and tested. The goal is to track
objects like walking people or moving vehicles in view of



the camera and to determine their type and position. In
Figure 1 the flow diagram of the system is shown. The
motion segmentation step detects the moving objects using
the current image in the image stream. This output (the
moving objects) is required by the object tracking algorithm
that provides the motion history of each object.

A particular characteristic of the tracking algorithm is its
ability to track objects with complete occlusion for a long
duration without knowledge about their shape or motion. The
output of the tracking algorithm is used by the classification
system. Our classification algorithm is a modified version of
the system presented in Javed and Shah [1]. The algorithm
uses on the motion history of each object and by determining
the type of motion. Motion type is determined by any re-
peated, recurrent motion of the object’s shape. This property
is used to classify between people and vehicles.

The motion segmentation, tracking and classification steps
are dependent on each other. Thus, the classification system
would deliver inappropriate results, if one of the previous
steps does not achieve good performance.

Classified Objects

Classification System

Motion Segmentation Object TrackingImage Stream Object Classification

Fig. 1. Flow diagram of common classification systems.

The tests and experiments in this paper were conducted
with a Canon VB-C50ir PTZ webcam. The maximal trans-
mission rate of the camera is 25f psand it captures 768×576
resolution color images. Our system is developed in the c++
programming language on a 3.2 GHz Pentium D using the
Open Source Computer Vision library (OpenCV).

IV. MOTION SEGMENTATION

An important condition in an object tracking algorithm as
well as in an object classification algorithm is that the motion
pixels of the moving objects in the images are segmented as
accurately as possible. The common approach for motion
segmentation consists of two steps: background subtraction
and segmentation of foreground pixels.

A. Techniques of Background Subtraction

Background subtraction [12] identifies moving objects by
selecting the parts of the image which differ significantly
from a background model. Most of the background sub-
traction algorithms follow a simple flow diagram shown in
Figure 2. Background modeling is a statistical description
of the current background scene. Foreground pixel detection
identifies the pixels in the current image that differ signif-
icantly from the background model and outputs them as a
binary candidate foreground mask.

The Approximated Median Filter was chosen to perform
background modeling. For our implementation, better results
were obtained by scaling the increment and decrement by a
step factor if the absolute difference between the current pixel
and the median-modeled background pixel is bigger than a
threshold.

Background
Modeling

Foreground Pixel
Detection

Image Stream

Background Subtraction

Segmentation of
Foreground Pixels

Fig. 2. Flow diagram of a general background subtraction algorithm.

Foreground pixels are detected by calculating the Eu-
clidean norm at timet:

‖I t(x,y)−Bt(x,y)‖ > Te (1)

where I t is the pixel intensity value,Bt is the background
intensity value at timet and Te is the foreground threshold
or by checking

|I j,t −B j,t | > Ta (2)

for j = 1, ...,c whereTa is the foreground threshold,

I t =
[

I1,t . . . Ic,t
]T

, Bt =
[

B1,t . . . Bc,t
]T

(3)

and c is the number of image channels. The foreground
thresholdsTe and Ta are determined experimentally. The
foreground pixels were detected by determining the threshold
Ta.

B. Segmentation of Foreground Pixels

In the next step, foreground pixels are segmented into
regions. Using the two-pass connected component labeling
method [3], a bounded box is applied to the connected
regions. After this step, only grouped regions with bordered
rectangles are considered. Any remaining noise is removed
in the second noise reduction step using a size filter [13].
Finally, blobs are merged if they intersect or if the distances
between them are below a threshold depending on the object
distance to the camera.

V. MULTIPLE OBJECT TRACKING WITH
OCCLUSION HANDLING

The goal of tracking is to establish correspondences be-
tween objects across frames. Robust classification of moving
objects is difficult if tracking is inaccurate. The flow diagram
of the implemented object tracking algorithm is shown in
Figure 3.
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Fig. 3. Flow diagram of the multiple object tracking algorithm.



A. Object Model Extraction

A region-based model of the objects is extracted in this
step. For every measured object, the normalized RGB color
histogram is determined to uniquely identify an object.
The histogram of an object was calculated by counting the
number of pixels of the mask image within the rectangle that
borders the object.

B. Position Prediction

In this step, the position of each tracked object on the
plane is predicted by a Kalman filter. By using a homography
the position measurement of each object is obtained. It is
assumed that the objects are orthogonal to the plane and the
lower points of the objects are touching the plane. Thus,
the midpoint of the lower rectangle edge is chosen as the
position and is projected onto the plane by the homography.

For the Kalman filter, a constant speed model is used.
Thus, it is assumed that the accelerations of all objects
are approximately zero except for noise to allow for non-
constant object velocities. Each tracked object is modeled
by one Kalman filter. The positions are also superimposed
with noise since initially, the object velocities can not be
estimated correctly due to absence of experience.

C. A Priori Assignment

In this step, the measured objects area priori assigned
to any existing tracks. Let̂T1−

t , T̂2−
t , ..., T̂m−

t denote the pre-
dicted positions of tracked objects andME1

t ,ME2
t , ...,MEn

t
denote the positions of the measured objects on the plane at
time stept. Then, the distance matrixDt is computed based
on the Euclidean norm as follows:

Dt(i, j) = ‖T̂ i−
t −ME j

t ‖ < Td, (4)

for i = 1, ...,m and j = 1, ...,n. It stores the distances be-
tween the predicted positions of the tracked objects and
the positions of the measured objects. The rows of the
distance matrix correspond to the existing tracks and the
columns to the measured objects. If the distance is above
thresholdTd, the element in the matrix will be set to infinity.
The thresholdTd is determined experimentally. Based on
analyzing the distance matrix, a decision matrixJt at time
stept is constructed. The number of rows and columns are
the same number as in the distance matrix and all elements
are set to 0. For each row inDt , find the lowest valued cell
and increment the corresponding cell inJt . The same is done
for the columns. Thus each cell inJt has a value between
zero and two.

Only if an element value of the decision matrixJt is
equal to two, the measured object is assigned to the tracked
object and their correspondence is stored. All elements in the
same row and column of the distance matrixDt are updated
to infinity and a new decision matrixJt is constructed.
This process is repeated until none of the elements in the
decision matrix equals to two. The correspondence between
the objects is calculated by the Bhattacharya distance:

BD(HT,HM) =
Nr ·Ng·Nb

∑
i=1

√

HT(i) ·HM(i) > Tco (5)

whereHT is the color histogram of the tracked object and
HM is the measured object withNr ·Ng ·Nb bins. The values
HT(i) andHM(i) are the normalized frequencies of the bin
i. If the Bhattacharya distance of the object histograms is
below the correspondence thresholdTco, a correspondence
between the objects is not given. The threshold is 1 for a
correspondence and 0 for a non-correspondence.

After the a priori assignment the tracked and measured
objects can be classified into the following three categories:

• matched tracked and measured objects,
• unmatched tracked objects and
• unmatched measured objects.
This step can not handle merging and splitting events,

in which one measured object may be assigned to multiple
tracks and one track may be assigned to multiple measured
objects. A merging and splitting algorithm was developed to
solve this problem.

D. Merging and Splitting

In this step, merging and splitting events are handled.
Here, it is a valid assumption that as soon as objects
touch each other, a large rectangle containing all objects is
generated. Thus, the objects are not occluding each other at
that time step. For tracked objects that are not matched to the
measured objects, a merging detection algorithm is used to
decide whether the track is merged with another track or it
remains unmatched. If the track remains unmatched, its age
increases until the object is assumed to be lost and therefore
no longer significant. For unmatched measured objects, a
splitting detection algorithm is developed. It decides whether
the measured object is split from a tracked object or it is a
new track.

E. Experimental Results

Three different scenes are chosen to represent the tracking
algorithm. The first two scenes are demonstrated in Figure
4. A moving car and a walking person is shown in the
leftmost figure. In the right three subfigures, two people
merge and split. After the splitting, the individuals were
identified correctly.

(a) (b) Before the
merging.

(c) After the
merging.

(d) After the
splitting.

Fig. 4. Multiple object tracking (left). Merging and splitting of two people
in a scene (right).

In figure 5, the third scene is demonstrated. In this scene,
two people cross each other. During the crossing, one person
occludes the other person. The persons are identified cor-
rectly after crossing. Note that complete occlusion of objects
via other moving objects is handled correctly.



(a) Before the
crossing.

(b) During the
crossing.

(c) Occlusion. (d) After the
crossing.

Fig. 5. Crossing of two people in a scene.

VI. OBJECT CLASSIFICATION

The goal is to classify each moving object visible in
the input images as a single person, group or vehicle. Our
approach to classify people and vehicles is based on [1].
The algorithm requires an appearance history of the object
from the tracking algorithm by means of a bounding box
(smallest possible rectangle bordering the mask of the object)
and correspondence of each object over the frames. In most
cases, the whole object is moving along with local changes
in shape (mask of the object). Thus, the objects are classified
by detecting repetitivechangesin their shapes. In Figure 6,
the flow diagram of the classification algorithm is presented.

Translation and
Scale Compensation
of Object Mask

History Image
Motion Image and Motion
Determination of Recurrent

Object Classification

Object Tracking

Classified Objects Type Assignment

Fig. 6. The flow diagram of the classification algorithm.

These steps are explained in the following sections where
an object mask is defined as the part of the mask image
within the bounding box of the object.

A. Translation and Scale Compensation of Object Masks

A moving object often changes its position within the
bounding box and its size. To eliminate effects of mask
changes that are not due to shape changes, the translation
and change in scale of the object mask over time needs
to be compensated. The assumption is that the only reason
for changes in the shape size is the variation of the object
distance from the camera. The translation is compensated
by aligning the objects in the images along its centroid. For
compensation of scale, the object mask is scaled in horizontal
and vertical directions such that its bounding box width and
height are the same as of the first observation.

B. Determination of Recurrent Motion Image and Motion
History Image

Let Ai
t(x,y), for i = 1, ...,m, be the pixel value of the

translation and scale compensated object maski at position
(x,y) and at timet. Then, a difference imageDi

t(x,y) is
generated for each objecti = 1, ...,m by using the exclusive-
or operator⊕ as follows:

Di
t(x,y) = Ai

t−1(x,y)⊕Ai
t(x,y). (6)

The value Di
t(x,y) indicates the shape changes of the

object. After this step, the Recurrent Motion Image (RMI)
is calculated as follows:

RMIit (x,y) =
∑τ

k=0Di
t−k(x,y)

τ
(7)

whereτ is the time interval that should be large enough
to capture the recurrent shape changes. The recurrent motion
image has high values at those pixels whose shape changes
repeatedly and low values at pixels where there are little
shape changes or no shape changes at all.

Our classification algorithm is based on the work of
Javed and Shah [1]. However, we found that it did not
always correctly classify objects that change shape through
turning. Henceforth, we enhanced their algorithm to increase
robustness by providing a second metric for analysing motion
- termed a ’Motion History Image’.

The Motion History Image (MHI) is a mask image that
indicates where motion of the object occurred during the
time intervalτ. It is calculated as follows:

MHI i
t (x,y) =

{

0 if ∑τ
k=0Ai

t−k(x,y) = 0
MHImax otherwise

(8)

whereMHImax is the maximum value of the MHI.

C. Type Assignment

Once the recurrent motion and the MHI of the object
is obtained, the type of the object needs to be classified.
Therefore, the recurrent motion is divided intoo×o equal
sized square blocks and the mean value for each block is
computed. The partitioning reduces the computation and the
averaging reduces noise. Then, the corresponding MHI is
computed by scaling it to ano× o image. In Figure 7,
examples of averaged recurrent motion and scaled MHI are
shown in three different scenes. As it can be seen, the ratio of
recurrent motion to motion occurrence of the single person
and the group in the bottom of the images is bigger than
that of the van, because a van has no repeated changes in its
shape.

The type assignment is also different to [1]. A Repeated
Motion Ratio is introduced to distinguish between people
and vehicles. The sumSi

t of all mean values of the blocks
in the bottom of the recurrent motion image at which the
corresponding blocks of the MHI has its maximum value
(motion has occurred) is determined for the objectsi =
1, ...,m at timet. During this step, the number of the blocks
oi

p,t in the bottom of the MHI with maximum value is
counted. In the next step, the Repeated Motion Ratio is
calculated by dividing the sumSi

t by the number of blocks
oi

p,t times the maximal valueRMImax of the recurrent motion
image. The Repeated Motion Ratio is 1, if the recurrent
motion image has its maximum mean value in every block
at which the corresponding MHI indicates motion. That is,
if the shape of the object changes repeatedly. If the recurrent
motion image has its minimum mean value 0 in every block,
the Repeated Motion Ratio is 0 as well which means that the
shape of the object does not change repeatedly. Thus, the
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Fig. 7. Examples of RMIs and MHIs in different scenes.

object type single person or group is assigned to the object,
if

RMRi
t =

Si
t

oi
p,t ·RMImax

> Tot (9)

whereTot is the fixed decision threshold of the object type.
If RMR is below that threshold, the object is classified as a
vehicle. The thresholdTot is determined experimentally.

D. Classification Results

The classification algorithm was applied to a variety of
video sequences. They contain people walking and vehicles
moving. Each sequence consists of 600 to 1000 frames.
The tracking algorithm provides the bounding box and
correspondence of each object over the images of each
sequence. The classification algorithm was applied for each
object after it has completely entered the image. The number
of frames over which the recurrent motion and the motion
history image were calculated isτ = 20. Thus, a wrong data
association do not have quite an impact on the recurrent
motion and the motion history image The decision threshold
of the object type isTot = 0.12. In Table I, the results of the
classification algorithm distinguishing between people and
vehicles are given. Even in presence of noisy mask images
accurate classifications were obtained.

TABLE I

RESULTS OF THE OBJECT CLASSIFICATION ALGORITHM.

TYPE OFOBJECT Classified as People Classified as Vehicle

Single People 38 0
Vehicle 1 20

VII. ONLINE APPLICATION OF THE
CLASSIFICATION SYSTEM

The classification system was applied online. The input
image stream is handled by the DDX framework (Dynamic

Data eXchange) developed by Corkeet al. [14]. To acquire
video live streams and controlling a camera the DDXVideo
framework is used [15].

Three representative scenarios were chosen. In the first,
a moving car enters the scene, stops, and a person egresses
and both leave. Two people crossing each other are displayed
in the second. During the crossing, one person occludes the
other. In the third scenario, two people merge and split. The
people occlude each other repeatedly when they are merged.
The results are shown in Figures 8 to 10.

Fig. 8. First scene: Person and car.

In all tests, the objects are correctly tracked and identified.
Further tests have shown that the classification system can
achieve frame rates 33−50f ps.

Fig. 9. Second scene: Two people cross each other.

We have also tested the algorithm on various vehicle types
and in different types of weather. Figure 11 below show
samples of a forklift in sunlight, and a bicycle rider in the
rain - both mounted and unmounted. The bicycle rider case
is interesting since the recurrent motion has a higher vertical
component than in walking cases. The classifier gave the
correct predictions in all cases.

VIII. CONCLUSIONS AND FUTURE WORK

We have demonstrated a vision based system for tracking
and classifying dynamic objects in an outdoor environment.
The system is based on [1] and shows improvements in
the detection and classification of people and vehicles. The
system can handle occlusions and has demonstrated good
results over multiple objects in varying weather conditions.
In each test case, the system accurately labeled the dynamic



(a) Before the
merging.

(b) After the
merging.

(c) During occlu-
sion 1.

(d) After occlu-
sion 1.

(e) During occlu-
sion 2.

(f) After occlu-
sion 2.

(g) After the
splitting.

Fig. 10. Third scene: Two people merge, occlude each other repeatedly
and split.

Fig. 11. Various types of dynamic objects have been used for testing the
system in different weather conditions.

objects and tracked them correctly. The system works in
real time and achieves a frame rate of 33− 50f ps for
768× 576 resolution color images on a 3.2 GHz Pentium
D computer. Our approach differs from existing approaches
in that multiple objects are reliably tracked, even presence
of occlusions, and the combination of using recurrent mo-
tion and Motion History Images improves classification and
tracking performance.

The system is a preliminary step towards improving
the situational awareness of either human-operated or au-
tonomous vehicles working in joint workspaces. Being more
aware of the environment makes operations safer and im-
proves efficiency since better local path planning can result
from knowing where potential path conflicts will occur and
anticipatory steps taken to avoid them.

Within this work a basis of classification system was
created. It is very efficient in terms of computational and
space requirements. The next step is to develop a cast
shadow algorithm in the motion segmentation step to create a
good prerequisite for object tracking and classification under
all lighting conditions. During the course of this research,
several cast shadow algorithms were tested [8], [16] but none
were robust or reliable enough in our test environment.

The object classifier of the system is also a basis for
investigating further improvements. For example, a classifier
could be developed that distinguishes between the different
types of vehicles like cars, vans, trucks etc. or between
single persons and groups. Furthermore the system could

be optimized in its implementation to improve its speed.
Introducing multiple camera viewing the scene in different
angles would improve the object tracking and classification
performance and robustness of the system.
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