
Proceedings of the IEEE ICRA 2009
Workshop on People Detection and Tracking
Kobe, Japan, May 2009

Abstract— In this paper we describe the use of situation
models for observing and understanding activity. Observing
activity in natural environments can be an extremely complex
perceptual problem. Situation models provide a means to both
focus attention in such systems and to provide default
reasoning to accommodate missing and erroneous observations.
We briefly review the use of situations models in Cognitive
Science and then describe how such models can be used to
provide services based on observation of human activity. We
present a layered component-oriented software architecture in
which components for perception and action maintain a
situation model for use in providing human services. We
describe how this model can be used to observe activity.

I. INTRODUCTION

Human activity is extremely rich. Real world scenes can
contain an overwhelming number of possible agents and
objects to detect and observe. As are result, systems and
services based on observation of activity must, either
implicitly or explicitly, be able to choose where to look next
and what to look for. Designers of system for observing
activity are increasingly confronted with the problem of
control of attention.

Attention is not the only problem confronting designers of
systems for observing activity. Activity in the real world
often occurs in less than ideal viewing conditions. Poor
lighting, background clutter, object texture, and occlusions
can degrade the reliability of even the most well designed
systems. Thus systems and services must be able to detect
and discard uncertain and unreliable observations, and if
appropriate, substitute default information. In addition, many
services require real time information from perception. In
such systems it may be preferable to provide an immediate
response with default information and to use background
processes to verify that the response was correct.

Current systems for observing activities tend to be
constructed in an ad-hoc manner with control structures that
are hard-wired into the system design. Such systems are
generally restricted to detecting a very small set of activities

Manuscript received March 9, 2009. This work was supported in part by

project ANR CASPER, as well as the European IST projects FAME (IST
2000-28323), CAVIAR (IST 2001- 37540) and CHIL (IST 506909)

James L. Crowley is Professor at Grenoble National Polytechnique
Institute (INPG) and directs the PRIMA Research group at INRIA Grenoble
Centre de Recherche, 655 Ave de l'Europe, 38334 St. Ismier, France.

Patrick Reignier is a Junior Professor (MdC) at the University Joseph
Fourier in Grenoble, and member of the PRIMA Research group at INRIA
Grenoble Centre de Recherche, 655 Ave de l'Europe, 38334 St. Ismier,
France.

Remi Barraquand is a doctoral student at Grenoble National
Polytechnique Institute (INPG) under the direction of James L. Crowley and
member of the PRIMA Research group at INRIA Grenoble Centre de
Recherche.

observed within a highly controlled environment. Adapting
such systems to different operating environments or
modifying such systems to observe different forms of
activity can involve extensive reprogramming.

In this paper we propose an approach for constructing
systems for observing activity based on a model from
Cognitive Science. We propose the use of situation models
to organize, control, and interpret perception of activity. We
will first provide some background from Cognitive Science
concerning the use of situation models as a model of human
cognition. We then describe how to use such a model to
build software systems that provide services. We propose a
layered, component-oriented software architecture for
building situation aware services, and examine how situation
models can be used to structure perceptual components and
to provide default information for understanding activity.
We conclude with a discussion of the problems of
automatically acquiring situation models through
developmental learning.

II. SITUATION MODELS AS MODELS FOR COGNITION

Situation models have been proposed by Johnson-Laird [1],
as a cognitive theory for human mental models. Over the
last 25 years, theories about situation models have been
adopted and developed by a large community of cognitive
psychologists. Key publications include [2], [3] as well as
[4].

Situations are defined as a set of relations between
entities, where a relation is a predicate function and an entity
is anything that can be observed. According to Radansky [2],
a situation model is a mental representation of a described or
experienced situation in a real or imaginary world.
Situation models are commonly composed of four primary
types of information:
1) A spatial-temporal framework (spatial locations, time

frames)
2) Entities (people, objects, ideas, etc.)
3) Properties of entities (color, emotions, goals, shape, etc.

)
4) Relational information (spatial, temporal, causal,

ownership, kinship, social, etc.)
Situation models can be structured along dimensions of

space, time, causality, actors and objects. Extensions of
situations models have been proposed to represent intentions
of actors. It is commonly assumed that both general world
knowledge (knowledge about concept types, e.g., scripts,
schemas, categories, etc) and referent specific knowledge
(knowledge about specific entities, independent of the
situation) are used in constructing situation models.

Situation Models: A Tool for Observing and Understanding Activity

James L. Crowley, Member, IEEE, Patrick Reignier and Remi Barranquand

Situation models are used for representations of:
1) Information about events.
2) Information about sequences of events.
3) Information about collections of episodes

We have adapted the concept of situation model to
construct systems and services based on monitoring and
observing human activity [5], [6], [7]. Although most of our
implementations have been constructed using smart
environments, such services can also be designed using
robotic systems. Indeed, our approach to smart environments
is to see the environment as a form of "inside out" robot,
observing and interacting with occupants. Thus we maintain
that models for understanding activity in smart environments
may also be adapted for construction of autonomous robots.

III. SITUATION MODELS FOR OBSERVING ACTIVITY

Situation models can be used to addresses the twin problems
of focus of attention, and operation with unreliable,
erroneous or missing data. They can also be used to
decouple services from the time constraints normally
imposed by real-time (or near real-time) vision systems. We
present our technique in the context of a service-oriented
architecture constructed using a layered, component-based,
software model. For the robotics and vision communities,
these concepts may require some explanation.

The term "service" is used here in its most general form.
Generally, it will refer to assistance that informatics systems
provide to people. User services can be designed as
software agents that interact and assist people. Over the last
few years, we have constructed a variety of services that
observe and model human activity in order to provide
assistance that is dependent on human context. Such systems
are generally said to be "context aware". Exampels include
services for lecture recording [8], meeting services [9],
monitoring of the health and well-being of elderly, and
availability monitoring [7]. As sensor and actuator
technology mature, we can expect to see the emergence of
an increasing variety of such systems for domestic services
(cleaning, logistics, cooking), commercial services
(shopping, queue management, customer assistance), health
monitoring and assisted living, security monitoring, and a
variety of other application domains. All of these examples
require observing and understanding the actions of humans.
We believe that situation models will provide an important
component for such systems.

We note that the term "service oriented" also has a more
technical meaning for the software engineering community.
In software engineering, a "service oriented" system is one
in which software components interact according to a well-
defined contract. For example, a location service integrates
information from a variety of sources to estimate the current
location of a user. Although the two uses of the term
"service" are not incompatible, they can cause some
confusion. Thus we will use the explicit term "software
services" for services that are primarily designed to interact
with software components. We will interchangeably use

"user services" or simply "services" for systems that interact
with and assist people.

Modern software systems are generally designed using a
layered architecture. A layered architecture organizes the
system into a hierarchy of interchangeable components, with
well-defined interfaces. The design and operation at a
particular layer may proceed independently of the
underlying components. Components that make up a
particular layer may be reused or shared by a variety of
services. Components that are temporarily inoperative may
be replaced with alternative components. A common
example of this approach is provided by the current
generation of location aware services on mobile devices that
can interchangeably use location information from GPS, cell
phone repeaters, or WIFI repeater identity. Components for
providing location from WIFI, GPS or cell-phone repeaters
are a form of "perceptual component" that operate in parallel
using competing methods to make available a key piece of
information: current location. We propose a similar
approach to building components for observing activity.
Perceptual components can be constructed to observe a
scene with competing methods to provide information that
may then be shared between different services.

A situation model falls naturally at the interface between
user services and perceptual components. For user services,
the situation model provides a default reasoning system that
can complete or repair partial or missing information from
sensing. For the perceptual components, the situation model
can be used to focus attention on the objects and events that
are relevant to a service, allowing irrelevant objects or
events to be ignored. The situation model can be used to
predict possible events, both to focus attention, and to
prepare a reaction before the event occurs.

In the following, we describe a layered architecture for
context aware user services based on observation of activity.
We then describe the elements of the situation model, and
describe how such a model can be used to configure and
control perceptual components, to focus attention, predict
events, and to provide default reasoning for observation of
activity.

A. Services, Sensors, and Components

We are interested in services that provide assistance through
the observation of human activity. A service determines
requirements for perception and action, without specifying
how these requirements are to be met. Hard-wiring the
interconnection between sensor signals and actuators is
possible, and can provide simplistic services that are
hardware dependent and have limited utility. Separating
services from their underlying hardware makes it possible to
build systems that operate in a larger range of environments,
for a larger variety of functions. However such separation
requires that the sensor-actuator layer provide logical
interfaces, or standard API's, that are function centered and
device independent. Hardware independence and generality
require abstractions for perception and action.

Fig. 1. A layered model for systems that observe human activity.

A layered architecture of user services is shown in figure

1. At the lowest layer, the service's view of the world is
provided by a collection of physical sensors and actuators.
This corresponds to the sensor-actuator layer. This layer
depends on the technology and encapsulates the diversity of
sensors and actuators by which the system interacts with the
world. Information at this layer is expressed in terms of
sensor signals and device commands.

Service abilities for perception and action are provided by
components for perception and action. Components make
observations about the environment, interact with users, and
take actions to impart changes to the environment.

In our systems, services maintain information about users
and the environment in a situation model. The situation
model has the form of a network of situations. Each situation
has three facets: Observation, Reaction and Prediction. The
observation facet specifies the entities, properties and
relations needed to define the situation. This can act as a
specification that serves to activate and configure a set of
perception components capable of providing observations
about the required entities and their relations. The reaction
facet specifies how the service should behave in each
situation, including both the desired state of the
environment, and a specification communications that the
service should make with the user. The Prediction facet
indicates possible changes to the current situation, by
pointing to adjacent situations and describing the events that
can indicate the change.

Sensors are devices that make measurements, ranging
simple devices that measure temperature or humidity, to
devices that capture motion (infrared motion detectors),
acoustic energy (microphones) and images (cameras) or 3D
structure (range sensors, stereo vision systems). Actuators
impart change on the environment. Such devices can range
from information displays, control of lighting and sound
systems, motorized controls for doors, windows and window
blinds, as well as mobile robotic devices for logistics,
cleaning or entertainment.

Components for perception and action operate at a higher
level of abstraction than sensors and actuators. While
sensors and actuators operate on device-specific signals,
perception and action operate in terms of environmental
state. Perception interprets sensor signals by detecting,
recognizing and observing people, things and events. Action
components alter the environment to being it to a desired
state. Tightly coupling perception and action can offer many
advantages. Controlling action with perception allows a
service to adapt action in accordance with the effect on the
environment. Action can also be used to reconfigure the

environment to improve perception, or even to probe the
environment as part of perception.

B. Components for Perception and Action

Perception and action components are autonomous
assemblies of modules executed in a cyclic manner by a
component supervisor. Components communicate via
synchronous data streams and asynchronous events in order
to provide software services for action or perception. We
propose a data-flow process architecture for software
components for perception and action [10], [11], [12].
Component based architectures, as described in Shaw and
Garlan [13], are composed of auto-descriptive functional
components joined by connectors. Such an architecture is
well adapted to interoperability of components, and thus
provides a framework in which components can employ
competing methods to accommodate sensor modes that are
unreliable or available in only limited conditions.

Components are controlled by a supervisory module. The
component supervisor interprets commands and parameters,
supervises the execution of the transformation, and responds
to queries with a description of the current state and
capabilities of the component. The auto-critical report from
modules allows a component supervisor to monitor the
execution time and to adapt the schedule of modules for the
next cycle so as to maintain a specified quality of service,
such as execution time or number of targets tracked. Such
monitoring can be used, for example, to reduce the
resolution of processing an image by selecting 1 pixel of N
[14] or to selectively delete targets judged to be
uninteresting or erroneous [15].

Figure 2. An example of perceptual component based on visual tracking

In addition to recognition, the supervisory component

provides execution scheduling, self-monitoring, parameter
regulation, and communications. The supervisor acts as a
scheduler, invoking execution of modules in a synchronous
manner. For self-monitoring, a component applies a model
of its own behavior to estimate both quality of service and
confidence for its outputs. Monitoring allows a process to
detect and adapt to degradations in performance due to
changing operating conditions by reconfiguring its
component modules and operating parameters. Monitoring
also enables a process to provide a symbolic description of
its capabilities and state.

Homeostasis or "autonomic regulation of internal state" is
a fundamental property for robust operation in an
uncontrolled environment. A component is auto-regulated
when processing is monitored and controlled so as to
maintain a certain quality of service. The process supervisor
maintains homeostasis by adapting module parameters to
maximize estimated quality of service. For example,
processing time and precision are two important state
variables for a tracking process. Quality of service measures
such as cycle-time, number of targets, or precision can be
maintained by dropping targets based on a priority
assignment or by changing resolution for processing of some
targets.

During the communication phase, the supervisor may
respond to requests from other components. These requests
may ask for descriptions of process state, process
capabilities, or may provide specification of new recognition
methods. The supervisor acts as a programmable interpreter,
receiving snippets of code script that determine the
composition and nature of the process execution cycle and
the manner in which the process reacts to events.
Recognition procedures are small procedures interpreted by
a lightweight language interpreter [16]. In our
implementation, such procedures may be preprogrammed or
they may be downloaded to the component during
configuration as snippets of code using a lisp-like language.

For most human activities, there are a potentially infinite
number of entities that could be observed and an infinite
number of possible relations for any set of entities. The
appropriate entities and relations must be determined with
respect to the service to be provided. This is the role of the
situation model. The situation model allows the system to
focus computing resources, to provide missing information,
and to determine appropriate or inappropriate system actions
for the current state of the activity.

Perceptual components communicate using Streams,
Events, and Queries. Streams are synchronous
communication channels for communicating continual data
such as image frames or acoustic signals. An important role
for perceptual components is to process streams in order to
observe entities and their properties. Events are
asynchronous messages generated by components in
response to changes in entities or their properties. Events
may be sent to other components or to the situation model.
Queries are communication transactions in which a service,
the situation model, or another component exchange
messages with the component supervisor in order to
interrogate a component about its entities and their
properties.

C. Assembling Components to Provide Services

We have constructed a middle-ware environment [17] that
allows us to dynamically launch and connect components on
different machines. This environment, called O3MiSCID,
provides an XML based interface that allows components to
declare input command messages, output data structures, as
well as current operational state. In this environment, a

user service may be created by assembling a collection of
perceptual components.

Available components are discovered by interrogating an
component data-base. An open research challenge is to
provide an ontological system for indexing components
based on function in a manner that is sufficiently general to
capture future functionalities as they emerge. In addition the
component data-base provides information about message
formats and data types for communication of streams, events
and queries.

Figure 3 shows a simple example of a service provided by
an assembly of perceptual components. This service
integrates information from multiple cameras to provide 3-D
target tracking. A set of tracked entities is provided by a
Bayesian 3D tracking process that tracks targets in 3D scene
coordinates. This process specifies the predicted 2-D Region
of Interest (ROI) and detection method for a set of pixel-
level detection components. These components use color,
motion or background difference subtraction to detect and
track blobs in an image stream from a camera. The
O3MICID middle-ware makes it possible to dynamically
add or drop cameras to the process during tracking.

Fig. 3. An example of an assembly of perceptual components. The 3D
Bayesian blob tracker provides a ROI and detection method for a number of
2D entity detection components. The result is used to update a list of 3D
blobs.

D. Entities and Relations

Situations are defined as relations between entities. An
"entity" is anything that can be observed. This solipsistic
viewpoint admits that the system can only see what it knows
how to see. At the same time, it sidesteps existential
dilemmas related to how to define notions of "object" and
"class".

Formally, entities are correlated sets of observations.
Entities are grounded in the software components for
observation of activity, typically through some form of
tracking process that correlates observations over time.
Entities can be decorated with properties that make possible
the determination of relations between entities.

A relation is a predicate or binary function computed on
the properties of one or more entities. Relations have an
arity, that specifies the number of properties that serve as
arguments. An arity-1 relation is true when a property is
observed to be within some range of values, or is otherwise
signaled as true by a sensor. Examples can include (standing
person) or (running person). Relations of Arity-2 include

many of the classical spatial and temporal relations as well
as more abstract functions describing social-behaviour or
emotion. Spatial relations can be 2D or 3D and relative or
absolute, depending on the requirements of the service.
Examples can include absolute position of actors (at podium
person), (seated-at table person), relative position (facing
person1 person2), or even refer to the posture of persons
(standing person). Observing human interaction can require
perceptual components that detect more abstract social
behaviour, such as (talking-to person1 person2) or (smiling-
at person1 person2).

As mentioned above, the number of potential relations
that might be observed is an unbounded set. The situation
model for a service specifies the relations between that are
required, the entities (agents and objects) that must be
observed, the properties that are needed to determine
relations. The task of the system designer is to provide
perceptual components that can detect and track the required
entities, measure the required properties, and detect when
the required relations are true.

Human attention is an important relation in social
situations. In our approach, we have adopted the attention
model developed by Maisonnasse [18]. In this work,
attention is defined as a cognitive process of selectively
concentrating on one aspect of the environment while
ignoring other things. We include attention of agents as one
of the fundamental relations for describing social situations.

E. Generalizing with Roles

In most situations, the exact identity of the entity is not
important. Thus we have generalized situation models by the
introducing of the concept of "role" [5]. A role is a form of
abstract model for an entity. In applying a situation model to
describe a scene, a system will select from available entities
to determine which entity can "fill" each role.

Operationally, a role is an abstract generalization for a
class of entities. Role classes are typically defined based on
the set of actions that entities in the class can take (actors),
or the set of actions that the entities can enable (props).
Formally, role is a function that selects an entity from the set
of observed entities.

A “role” is NOT an intrinsic property of an entity, but
rather, is an interpretation applied to an entity by the system.
Entities are assigned to roles by a role assignment process.
Role assignment generally occurs by applying a set of tests
to available entities. The role assignment process acts as a
form of "filter" [19] that sorts entities based on the
suitability of their properties. The most suitable entity wins
the role assignment.

In our experiments for automatic learning of situation
models [6], we have discovered that roles provide
generalization, making it possible to greatly accelerate
learning. Reactions learned for a situation composed of one
set of entities can be used to understand a different set of
entities.

F. Situations as Scripts for Understanding Activity

The situation model acts as a non-linear script for
interpreting activity and predicting the corresponding
appropriate and inappropriate actions for services. This
framework organizes the observation of interaction using a
hierarchy of concepts: scenario, situation, role, entity and
relations. A situation is defined as a configuration of
relations over a set of entities playing roles. Thus a situation
is a form of state, expressed as a logical expression (a
conjunction of predicates). This logical expression is
composed of predicates whose arguments are roles. This
concept generalizes and extends the common practice of
defining situations based on the relative position of actors
and objects.

Relations test the properties of entities that have been
assigned to roles. As mentioned above, situations also
predict possible future situations. This is captured by the
connectivity of a situation network. Changes in the logical
expression of relations or in the selection of entities playing
roles are represented as changes in situation. Such changes
can trigger system actions.

A situation is a form of state, expressed as a logical
expression (a conjunction of predicates). Situations are
organized into networks, with transition probabilities, so that
possible next situations may be predicted from the current
situation. In our systems, the situation model drives focus of
attention by specifying the entities and relations that should
be attended. When a service is initiated, a list of relevant
entities and relations are provided, along with the relevant
configuration information. This list is used to initiate and
configure the relevant perceptual and action components
needed to maintain the situation model.

Each situation contains a list of expected relations, as well
as expected observed entities and their expected properties.
Transitions between situations can be triggered by events,
and do not require verification for the entire set of relations,
entities and properties. Thus it is possible for a situation to
provide default values for relations, and properties that have
not been verified. When interrogated by a service, a situation
model may respond with the default values, whether or not
these values can be currently verified. Such a response can
be provided without waiting for an actual verification to
occur. However, this verification can be used as an integrity
check for the situation model

When a system responds with a default value, it is good
practice for the system to query the relevant perceptual
components to verify that the default value is correct. In
some cases, this may indicate a divergence between the
situation model and the environment. Such a divergence can
be used to trigger a diagnostic process to recover from the
current error, by adapting perception to changes in the
environment or by developing the situation model by adding
new situations or behaviours.

IV. 5. LEARNING SITUATION NETWORKS

We distinguish the concepts of adaptation from development
[20]. Adaptation allows a system to maintain consistent
behaviour across variations in operating environments. The
environment denotes the physical world (e.g., in the street,
lighting conditions), the user (identification, location, goals
and activities), social settings, and computational,
communicational and interactive resources. Development
refers to the acquisition of abilities, in this case encoded as
situation models composed of the entities, roles and relations
with which situation is described and service actions are
performed.

Systems for providing services based on observing
activity must both adapt and develop. Adaptation is
necessary to maintain consistent behaviour while
accommodating changes in the operating environment, task,
user population, preferences or some other factors. At the
same time, human activity is too complex to be fully
captured in a pre-programmed situation model. An activity
model must develop through observation and interaction
with users. A fundamental challenge is to provide both
automatic adaptation and automatic development without
disruption.

Current learning technologies, such as hidden Markov
models and neural networks, require large sets of training
data – something that is difficult to obtain for an
uncontrolled environment. Development of context models
requires new ways of looking at learning, and suggests the
need for a new class of minimally supervised learning
algorithms. This requires that learning be studied as part of a
semi-autonomous system. It requires that systems have
properties of self-description, self-evaluation and auto-
regulation, and may well lead to new classes of learning
algorithms specifically suitable to developing and evolving
context models in a non-disruptive manner.

We are currently experimenting with techniques for
adapting activity models based on pre-defined stereotypical
situations [21]. We are exploring different approaches to
learning for development of activity models starting from a
predefined stereotypical model using feedback about the
system actions. Because the different components of the
model (entities, roles, relations, and situations) depend on
each other, these cannot be developed simultaneously. Thus
we have focused on the development of the situation
networks and the associated system actions.

Bayesian models (in particular Hidden Markov Models
[22] as well as algorithms based on first-order logic [23] can
be used to represent and adapt the situation network.
However, these approaches do not have desirable properties
concerning the extension of the number of situations.
Bayesian models require a large amount of example data to
extend the number of states. First-order logic algorithms
cannot create new predicates (problem of higher order
logic), which is necessary for the extension of situations.
Thus we propose an approach for changes in the structure of
the situation network, as shown in figure 4.

 The input to the algorithm is a predefined situation
network along with feedback from prior use mediated by a
supervisor. The supervisor corrects, deletes or preserves the
actions executed by the system while observing a user in the
environment. Each correction, deletion, or preservation
generates a training example for the learning algorithm
containing current situation, roles and configuration of
relations, and the (correct) (re)action. The differences
between the actions given in the training examples and the
actions provided in the predefined situation network will
drive the different steps of the algorithm.

Initially, our approach has been to directly modify system
actions using the existing situation network. If action A is
associated with situation S, and all training examples
indicate that action B must be executed instead of A, then B
is associated to S and the association between A and S is
deleted.

Fig 4: Overview of the algorithm for adapting system actions

V. CONCLUSIONS

 Activity models for context aware services can be expressed
as a network of situations concerning a set of roles, entities
and relations. Roles are abstract classes for entities. Entities
may be interpreted as playing a role, based on their current
properties. Relations between entities playing roles define
situations. This conceptual framework provides default
reasoning, focus of attention, and real time response for
services that require observation of human activity. This
model can also provide a basis for adaptation and
development of non-disruptive software services for aiding
human-to-human interaction.

Socially aware observation of activity and interaction is a
key requirement for development of non-disruptive context
aware user services. For this to become reality, we need
methods for robust observation of activity, as well as
methods to automatically learn about activity without
imposing disruptions. The framework and techniques
described in this paper are intended as a foundation for such
observation.

REFERENCES

[1] P. N. Johnson-Laird, Mental Models: Towards a
Cognitive Science of Language, Inference, and
Consciousness, Harvard Univ. Press, Cambridge, MA,
1983.

[2] Radvansky, G. A., & Zacks, R. T. (1997). The retrieval
of situation-specific information. In M. A. Conway
(Ed.) Cognitive Models of Memory, pp. 173-213.
Cambridge, MA: MIT Press.

[3] Zwaan, R. A. Radvansky, G. A., "Situation Models in
Language Comprehension and Memory,
PSYCHOLOGICAL BULLETIN, VOL 123;
NUMBER 2, pages 162-185, 1998.

[4] P.N. Johnson-Laird, Mental models, MIT Press
Cambridge, MA, USA, 1989.

[5] J. L. Crowley, "Context Driven Observation of Human
Activity", European Symposium on Ambient
Intelligence, Amsterdam, 3-5 November 2003

[6] J. L. Crowley, O. Brdiczka, and P. Reignier. Learning
Situation Models for Understanding Activity In The 5th
International Conference on Development and Learning
2006 (ICDL06), Bloomington, Il., USA, June 2006

[7] O. Brdiczka, J. L. Crowley, P. Reignier, Learning
situation models for providing context-aware services,
in "IEEE Transactions on Man, Systems and
Cybernetics, Part B", Volume 38, Number 1, January
2008.

[8] F. Metze, P. Gieselmann, H. Holzapfel, T. Kluge, I.
Rogina, A. Waibel, and M. Wolfel, J. Crowley, P.
Reignier and D. Vaufreydaz, F. Bérard, B. Cohen, J.
Coutaz, V. Arranz, M. Bertran and H. Rodriguez, "The
FAME Interactive Space", 2nd Joint Workshop on
Multimodal Interaction and Related Machine Learning
Algorithms, MLMI, Edinburgh, July 2005.

[9] M. Danninger, T. Kluge, R. Stiefelhagen,
"MyConnector: analysis of context cues to predict
human availability for communication", International
Conference on Multimodal Interaction, ICMI 2006:
pp12-19, Trento, 2006.

[10] Software Process Modeling and Technology, edited by
A. Finkelstein, J. Kramer and B. Nuseibeh, Research
Studies Press, John Wiley and Sons Inc, 1994.

[11] J. Rasure and S. Kubica, “The Khoros application
development environment “, in Experimental
Environments for computer vision and image
processing, H. Christensen and J. L. Crowley, Eds,
World Scientific Press, pp 1-32, 1994.

[12] J. L. Crowley, "Integration and Control of Reactive
Visual Processes", Robotics and Autonomous Systems,
Vol 15, No. 1, decembre 1995

[13] M. Shaw and D. Garlan, Software Architecture:
Perspectives on an Emerging Disciplines, Prentice Hall,
1996.

[14] J. Piater and J. Crowley, "Event-based Activity
Analysis in Live Video using a Generic Object
Tracker", Performance Evaluation for Tracking and
Surveillance, PETS-2002, Copenhagen, June 2002.

[15] D. Hall, R. Emonet, and J. L. Crowley, "An automatic
approach for parameter selection in self-adaptive

tracking." In International Conference on Computer
Vision Theory and Applications (VISAPP), Setubal,
Portugal, Feb. 2006.

[16] A. Lux, "The Imalab Method for Vision Systems",
International Conference on Vision Systems, ICVS-03,
Graz, april 2003.

[17] R. Emonet, D. Vaufreydaz, P. Reignier, J. Letessier,
"O3MiSCID: an Object Oriented Opensource
Middleware for Service Connection, Introspection an
Discover", 1st IEEE International Workshop on
Services Integration in Pervasive Environments - June
2006.

[18] J. Maisonnasse, N. Gourier, O. Brdiczka and P.
Reignier, Attentional Model for Perceiving Social
Context in Intelligent Environments, Artificial
Intelligence Apllications and Innovations 2006.

[19] O. Brdiczka, J. Maisonnasse, P. Reignier, Automatic
Detection of Interaction Groups, 2005 International
Conference on Multimodal interaction, ICMI '05, Trento
It., october 2005

[20] J Coutaz, J. L. Crowley, S. Dobson, and D. Garlan,
"Context is Key", Communications of the ACM, Special
issue on the Disappearing Computer, Vol 48, No 3, pp
49-53 March 2005.

[21] R. Barraquand and J. L. Crowley, "Learning Polite
Behavior with Situation Models", Third International
Conference on Human Robot Interaction (HRI 2008),
12-15 March 2008, Amsterdam, The Netherlands

[22] L. R. Rabiner, A Tutorial on Hidden Markov Models
and selected Applications in Speech Recognition.
Readings in speech recognition. p. 267-296, 1990.

[23] J. R. Quinlan, Learning Logical Definitions from
Relations. Machine Learning. 5(3), p. 239-266, 1990.

