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Abstract— In this paper we describe the use of situation 
models for observing and understanding activity. Observing 
activity in natural environments can be an extremely complex 
perceptual problem. Situation models provide a means to both 
focus attention in such systems and to provide default 
reasoning to accommodate missing and erroneous observations. 
We briefly review the use of situations models in Cognitive 
Science and then describe how such models can be used to 
provide services based on observation of human activity. We 
present a layered component-oriented software architecture in 
which components for perception and action maintain a 
situation model for use in providing human services. We 
describe how this model can be used to observe activity. 

I. INTRODUCTION 

Human activity is extremely rich. Real world scenes can 
contain an overwhelming number of possible agents and 
objects to detect and observe.  As are result, systems and 
services based on observation of activity must, either 
implicitly or explicitly, be able to choose where to look next 
and what to look for. Designers of system for observing 
activity are increasingly confronted with the problem of 
control of attention. 

Attention is not the only problem confronting designers of 
systems for observing activity. Activity in the real world 
often occurs in less than ideal viewing conditions. Poor 
lighting, background clutter, object texture, and occlusions 
can degrade the reliability of even the most well designed 
systems. Thus systems and services must be able to detect 
and discard uncertain and unreliable observations, and if 
appropriate, substitute default information. In addition, many 
services require real time information from perception. In 
such systems it may be preferable to provide an immediate 
response with default information and to use background 
processes to verify that the response was correct.  

Current systems for observing activities tend to be 
constructed in an ad-hoc manner with control structures that 
are hard-wired into the system design. Such systems are 
generally restricted to detecting a very small set of activities 
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observed within a highly controlled environment.  Adapting 
such systems to different operating environments or 
modifying such systems to observe different forms of 
activity can involve extensive reprogramming.   

In this paper we propose an approach for constructing 
systems for observing activity based on a model from 
Cognitive Science. We propose the use of situation models 
to organize, control, and interpret perception of activity. We 
will first provide some background from Cognitive Science 
concerning the use of situation models as a model of human 
cognition. We then describe how to use such a model to 
build software systems that provide services. We propose a 
layered, component-oriented software architecture for 
building situation aware services, and examine how situation 
models can be used to structure perceptual components and 
to provide default information for understanding activity. 
We conclude with a discussion of the problems of 
automatically acquiring situation models through 
developmental learning.  

II. SITUATION MODELS AS MODELS FOR COGNITION 

Situation models have been proposed by Johnson-Laird [1], 
as a cognitive theory for human mental models.  Over the 
last 25 years, theories about situation models have been 
adopted and developed by a large community of cognitive 
psychologists. Key publications include [2], [3] as well as 
[4].  

Situations are defined as a set of relations between 
entities, where a relation is a predicate function and an entity 
is anything that can be observed. According to Radansky [2], 
a situation model is a mental representation of a described or 
experienced situation in a real or imaginary world.   
Situation models are commonly composed of four primary 
types of information: 
1) A spatial-temporal framework  (spatial locations, time 

frames) 
2) Entities (people, objects, ideas, etc. ) 
3) Properties of entities (color, emotions, goals, shape, etc. 

) 
4) Relational information (spatial, temporal, causal, 

ownership, kinship, social, etc. )  
Situation models can be structured along dimensions of 

space, time, causality, actors and objects. Extensions of 
situations models have been proposed to represent intentions 
of actors.  It is commonly assumed that both general world 
knowledge (knowledge about concept types, e.g., scripts, 
schemas, categories, etc ) and referent specific knowledge 
(knowledge about specific entities, independent of the 
situation) are used in constructing situation models.  
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Situation models are used for representations of: 
1) Information about events. 
2) Information about sequences of events.  
3) Information about collections of episodes  

We have adapted the concept of situation model to 
construct systems and services based on monitoring and 
observing human activity [5], [6], [7]. Although most of our 
implementations have been constructed using smart 
environments, such services can also be designed using 
robotic systems. Indeed, our approach to smart environments 
is to see the environment as a form of "inside out" robot, 
observing and interacting with occupants. Thus we maintain 
that models for understanding activity in smart environments 
may also be adapted for construction of autonomous robots.  

III. SITUATION MODELS FOR OBSERVING ACTIVITY 

Situation models can be used to addresses the twin problems 
of focus of attention, and operation with unreliable, 
erroneous or missing data. They can also be used to 
decouple services from the time constraints normally 
imposed by real-time (or near real-time) vision systems.  We 
present our technique in the context of a service-oriented 
architecture constructed using a layered, component-based, 
software model. For the robotics and vision communities, 
these concepts may require some explanation.  

The term "service" is used here in its most general form. 
Generally, it will refer to assistance that informatics systems  
provide to people.  User services can be designed as 
software agents that interact and assist people. Over the last 
few years, we have constructed a variety of services that 
observe and model human activity in order to provide 
assistance that is dependent on human context. Such systems 
are generally said to be "context aware". Exampels include 
services for lecture recording [8], meeting services [9], 
monitoring of the health and well-being of elderly, and 
availability monitoring [7]. As sensor and actuator 
technology mature, we can expect to see the emergence of 
an increasing variety of such systems for domestic services 
(cleaning, logistics, cooking), commercial services 
(shopping, queue management, customer assistance), health 
monitoring and assisted living, security monitoring, and a 
variety of other application domains. All of these examples 
require observing and understanding the actions of humans. 
We believe that situation models will provide an important 
component for such systems.  

We note that the term "service oriented" also has a more 
technical meaning for the software engineering community. 
In software engineering, a "service oriented" system is one 
in which software components interact according to a well-
defined contract. For example, a location service integrates 
information from a variety of sources to estimate the current 
location of a user.  Although the two uses of the term 
"service" are not incompatible, they can cause some 
confusion. Thus we will use the explicit term "software 
services" for services that are primarily designed to interact 
with software components. We will interchangeably use 

"user services" or simply "services" for systems that interact 
with and assist people.  

Modern software systems are generally designed using a 
layered architecture. A layered architecture organizes the 
system into a hierarchy of interchangeable components, with 
well-defined interfaces. The design and operation at a 
particular layer may proceed independently of the 
underlying components. Components that make up a 
particular layer may be reused or shared by a variety of 
services. Components that are temporarily inoperative may 
be replaced with alternative components. A common 
example of this approach is provided by the current 
generation of location aware services on mobile devices that 
can interchangeably use location information from GPS, cell 
phone repeaters, or WIFI repeater identity. Components for 
providing location from WIFI, GPS or cell-phone repeaters 
are a form of "perceptual component" that operate in parallel 
using competing methods to make available a key piece of 
information: current location.  We propose a similar 
approach to building components for observing activity. 
Perceptual components can be constructed to observe a 
scene with competing methods to provide information that 
may then be shared between different services.  

A situation model falls naturally at the interface between 
user services and perceptual components. For user services, 
the situation model provides a default reasoning system that 
can complete or repair partial or missing information from 
sensing. For the perceptual components, the situation model 
can be used to focus attention on the objects and events that 
are relevant to a service, allowing irrelevant objects or 
events to be ignored. The situation model can be used to 
predict possible events, both to focus attention, and to 
prepare a reaction before the event occurs.  

In the following, we describe a layered architecture for 
context aware user services based on observation of activity. 
We then describe the elements of the situation model, and 
describe how such a model can be used to configure and 
control perceptual components, to focus attention, predict 
events, and to provide default reasoning for observation of 
activity.  

A. Services, Sensors, and Components  

We are interested in services that provide assistance through 
the observation of human activity. A service determines 
requirements for perception and action, without specifying 
how these requirements are to be met.  Hard-wiring the 
interconnection between sensor signals and actuators is 
possible, and can provide simplistic services that are 
hardware dependent and have limited utility. Separating 
services from their underlying hardware makes it possible to 
build systems that operate in a larger range of environments, 
for a larger variety of functions. However such separation 
requires that the sensor-actuator layer provide logical 
interfaces, or standard API's, that are function centered and 
device independent. Hardware independence and generality 
require abstractions for perception and action.  



  

 
Fig. 1. A layered model for systems that observe human activity. 

 
A layered architecture of user services is shown in figure 

1.  At the lowest layer, the service's view of the world is 
provided by a collection of physical sensors and actuators.  
This corresponds to the sensor-actuator layer. This layer 
depends on the technology and encapsulates the diversity of 
sensors and actuators by which the system interacts with the 
world. Information at this layer is expressed in terms of 
sensor signals and device commands.  

Service abilities for perception and action are provided by 
components for perception and action. Components make 
observations about the environment, interact with users, and 
take actions to impart changes to the environment.   

In our systems, services maintain information about users 
and the environment in a situation model. The situation 
model has the form of a network of situations. Each situation 
has three facets: Observation, Reaction and Prediction. The 
observation facet specifies the entities, properties and 
relations needed to define the situation. This can act as a 
specification that serves to activate and configure a set of 
perception components capable of providing observations 
about the required entities and their relations. The reaction 
facet specifies how the service should behave in each 
situation, including both the desired state of the 
environment, and a specification communications that the 
service should make with the user. The Prediction facet 
indicates possible changes to the current situation, by 
pointing to adjacent situations and describing the events that 
can indicate the change. 

Sensors are devices that make measurements, ranging 
simple devices that measure temperature or humidity, to 
devices that capture motion (infrared motion detectors), 
acoustic energy (microphones) and images (cameras) or 3D 
structure (range sensors, stereo vision systems). Actuators 
impart change on the environment. Such devices can range 
from information displays, control of lighting and sound 
systems, motorized controls for doors, windows and window 
blinds, as well as mobile robotic devices for logistics, 
cleaning or entertainment.  

Components for perception and action operate at a higher 
level of abstraction than sensors and actuators.  While 
sensors and actuators operate on device-specific signals, 
perception and action operate in terms of environmental 
state. Perception interprets sensor signals by detecting, 
recognizing and observing people, things and events.  Action 
components alter the environment to being it to a desired 
state. Tightly coupling perception and action can offer many 
advantages. Controlling action with perception allows a 
service to adapt action in accordance with the effect on the 
environment. Action can also be used to reconfigure the 

environment to improve perception, or even to probe the 
environment as part of perception.   

B. Components for Perception and Action 

Perception and action components are autonomous 
assemblies of modules executed in a cyclic manner by a 
component supervisor. Components communicate via 
synchronous data streams and asynchronous events in order 
to provide software services for action or perception. We 
propose a data-flow process architecture for software 
components for perception and action [10], [11], [12]. 
Component based architectures, as described in Shaw and 
Garlan [13], are composed of auto-descriptive functional 
components joined by connectors. Such an architecture is 
well adapted to interoperability of components, and thus 
provides a framework in which components can employ 
competing methods to accommodate sensor modes that are 
unreliable or available in only limited conditions.  

Components are controlled by a supervisory module. The 
component supervisor interprets commands and parameters, 
supervises the execution of the transformation, and responds 
to queries with a description of the current state and 
capabilities of the component. The auto-critical report from 
modules allows a component supervisor to monitor the 
execution time and to adapt the schedule of modules for the 
next cycle so as to maintain a specified quality of service, 
such as execution time or number of targets tracked.  Such 
monitoring can be used, for example, to reduce the 
resolution of processing an image by selecting 1 pixel of N 
[14] or to selectively delete targets judged to be 
uninteresting or erroneous [15]. 

 
Figure 2. An example of perceptual component based on visual tracking 

 
In addition to recognition, the supervisory component 

provides execution scheduling, self-monitoring, parameter 
regulation, and communications. The supervisor acts as a 
scheduler, invoking execution of modules in a synchronous 
manner.  For self-monitoring, a component applies a model 
of its own behavior to estimate both quality of service and 
confidence for its outputs. Monitoring allows a process to 
detect and adapt to degradations in performance due to 
changing operating conditions by reconfiguring its 
component modules and operating parameters.  Monitoring 
also enables a process to provide a symbolic description of 
its capabilities and state.  



  

Homeostasis or "autonomic regulation of internal state" is 
a fundamental property for robust operation in an 
uncontrolled environment. A component is auto-regulated 
when processing is monitored and controlled so as to 
maintain a certain quality of service. The process supervisor 
maintains homeostasis by adapting module parameters to 
maximize estimated quality of service.  For example, 
processing time and precision are two important state 
variables for a tracking process. Quality of service measures 
such as cycle-time, number of targets, or precision can be 
maintained by dropping targets based on a priority 
assignment or by changing resolution for processing of some 
targets.  

During the communication phase, the supervisor may 
respond to requests from other components. These requests 
may ask for descriptions of process state, process 
capabilities, or may provide specification of new recognition 
methods. The supervisor acts as a programmable interpreter, 
receiving snippets of code script that determine the 
composition and nature of the process execution cycle and 
the manner in which the process reacts to events. 
Recognition procedures are small procedures interpreted by 
a lightweight language interpreter [16]. In our 
implementation, such procedures may be preprogrammed or 
they may be downloaded to the component during 
configuration as snippets of code using a lisp-like language.   

For most human activities, there are a potentially infinite 
number of entities that could be observed and an infinite 
number of possible relations for any set of entities. The 
appropriate entities and relations must be determined with 
respect to the service to be provided. This is the role of the 
situation model. The situation model allows the system to 
focus computing resources, to provide missing information, 
and to determine appropriate or inappropriate system actions 
for the current state of the activity.  

Perceptual components communicate using Streams, 
Events, and Queries. Streams are synchronous 
communication channels for communicating continual data 
such as image frames or acoustic signals. An important role 
for perceptual components is to process streams in order to 
observe entities and their properties. Events are 
asynchronous messages generated by components in 
response to changes in entities or their properties.  Events 
may be sent to other components or to the situation model. 
Queries are communication transactions in which a service, 
the situation model, or another component exchange 
messages with the component supervisor in order to 
interrogate a component about its entities and their 
properties.  

C. Assembling Components to Provide Services  

We have constructed a middle-ware environment [17] that 
allows us to dynamically launch and connect components on 
different machines. This environment, called O3MiSCID, 
provides an XML based interface that allows components to 
declare input command messages, output data structures, as 
well as current operational state.    In this environment, a 

user service may be created by assembling a collection of 
perceptual components.  

Available components are discovered by interrogating an 
component data-base. An open research challenge is to 
provide an ontological system for indexing components 
based on function in a manner that is sufficiently general to 
capture future functionalities as they emerge. In addition the 
component data-base provides information about message 
formats and data types for communication of streams, events 
and queries.   

Figure 3 shows a simple example of a service provided by 
an assembly of perceptual components. This service 
integrates information from multiple cameras to provide 3-D 
target tracking.  A set of tracked entities is provided by a 
Bayesian 3D tracking process that tracks targets in 3D scene 
coordinates. This process specifies the predicted 2-D Region 
of Interest (ROI) and detection method for a set of pixel-
level detection components. These components use color, 
motion or background difference subtraction to detect and 
track blobs in an image stream from a camera. The 
O3MICID middle-ware makes it possible to dynamically 
add or drop cameras to the process during tracking.  

 
Fig. 3. An example of an assembly of perceptual components. The 3D 
Bayesian blob tracker provides a ROI and detection method for a number of 
2D entity detection components. The result is used to update a list of 3D 
blobs. 

D. Entities and Relations 

Situations are defined as relations between entities.  An  
"entity" is anything that can be observed.  This solipsistic 
viewpoint admits that the system can only see what it knows 
how to see. At the same time, it sidesteps existential 
dilemmas related to how to define notions of "object" and 
"class".   

Formally, entities are correlated sets of observations. 
Entities are grounded in the software components for 
observation of activity, typically through some form of 
tracking process that correlates observations over time. 
Entities can be decorated with properties that make possible 
the determination of relations between entities.  

A relation is a predicate or binary function computed on 
the properties of one or more entities. Relations have an 
arity, that specifies the number of properties that serve as 
arguments. An arity-1 relation is true when a property is 
observed to be within some range of values, or is otherwise 
signaled as true by a sensor. Examples can include (standing 
person) or (running person). Relations of Arity-2 include 



  

many of the classical spatial and temporal relations as well 
as more abstract functions describing social-behaviour or 
emotion. Spatial relations can be 2D or 3D and relative or 
absolute, depending on the requirements of the service.  
Examples can include absolute  position of actors (at podium 
person), (seated-at table person), relative position (facing 
person1 person2), or even refer to the posture of persons 
(standing person). Observing human interaction can require 
perceptual components that detect more abstract social 
behaviour, such as (talking-to person1 person2) or (smiling-
at person1 person2).  

As mentioned above, the number of potential relations 
that might be observed is an unbounded set. The situation 
model for a service specifies the relations between that are 
required, the entities (agents and objects) that must be 
observed, the properties that are needed to determine 
relations. The task of the system designer is to provide 
perceptual components that can detect and track the required 
entities, measure the required properties, and detect when 
the required relations are true.  

Human attention is an important relation in social 
situations. In our approach, we have adopted the attention 
model developed by Maisonnasse [18]. In this work, 
attention is defined as a cognitive process of selectively 
concentrating on one aspect of the environment while 
ignoring other things. We include attention of agents as one 
of the fundamental relations for describing social situations. 

E. Generalizing with Roles 

In most situations, the exact identity of the entity is not 
important. Thus we have generalized situation models by the 
introducing of the concept of "role" [5]. A role is a form of 
abstract model for an entity. In applying a situation model to 
describe a scene, a system will select from available entities 
to determine which entity can "fill" each role.  

Operationally, a role is an abstract generalization for a 
class of entities. Role classes are typically defined based on 
the set of actions that entities in the class can take (actors), 
or the set of actions that the entities can enable (props). 
Formally, role is a function that selects an entity from the set 
of observed entities.  

A “role” is NOT an intrinsic property of an entity, but 
rather, is an interpretation applied to an entity by the system. 
Entities are assigned to roles by a role assignment process. 
Role assignment generally occurs by applying a set of tests 
to available entities.  The role assignment process acts as a 
form of  "filter" [19] that sorts entities based on the 
suitability of their properties. The most suitable entity wins 
the role assignment.  

In our experiments for automatic learning of situation 
models [6], we have discovered that roles provide 
generalization, making it possible to greatly accelerate 
learning. Reactions learned for a situation composed of one 
set of entities can be used to understand a different set of 
entities.  

F. Situations as Scripts for Understanding Activity 

The situation model acts as a non-linear script for 
interpreting activity and predicting the corresponding 
appropriate and inappropriate actions for services. This 
framework organizes the observation of interaction using a 
hierarchy of concepts: scenario, situation, role, entity and 
relations. A situation is defined as a configuration of 
relations over a set of entities playing roles. Thus a situation 
is a form of state, expressed as a logical expression (a 
conjunction of predicates).  This logical expression is 
composed of predicates whose arguments are roles.  This 
concept generalizes and extends the common practice of 
defining situations based on the relative position of actors 
and objects. 

Relations test the properties of entities that have been 
assigned to roles. As mentioned above, situations also 
predict possible future situations. This is captured by the 
connectivity of a situation network. Changes in the logical 
expression of relations or in the selection of entities playing 
roles are represented as changes in situation. Such changes 
can trigger system actions. 

A situation is a form of state, expressed as a logical 
expression (a conjunction of predicates).  Situations are 
organized into networks, with transition probabilities, so that 
possible next situations may be predicted from the current 
situation. In our systems, the situation model drives focus of 
attention by specifying the entities and relations that should 
be attended. When a service is initiated, a list of relevant 
entities and relations are provided, along with the relevant 
configuration information. This list is used to initiate and 
configure the relevant perceptual and action components 
needed to maintain the situation model.   

Each situation contains a list of expected relations, as well 
as expected observed entities and their expected properties. 
Transitions between situations can be triggered by events, 
and do not require verification for the entire set of relations, 
entities and properties. Thus it is possible for a situation to 
provide default values for relations, and properties that have 
not been verified. When interrogated by a service, a situation 
model may respond with the default values, whether or not 
these values can be currently verified. Such a response can 
be provided without waiting for an actual verification to 
occur. However, this verification can be used as an integrity 
check for the situation model   

When a system responds with a default value, it is good 
practice for the system to query the relevant perceptual 
components to verify that the default value is correct.  In 
some cases, this may indicate a divergence between the 
situation model and the environment. Such a divergence can 
be used to trigger a diagnostic process to recover from the 
current error, by adapting perception to changes in the 
environment or by developing the situation model by adding 
new situations or behaviours.   



  

IV. 5. LEARNING SITUATION NETWORKS 

We distinguish the concepts of adaptation from development 
[20]. Adaptation allows a system to maintain consistent 
behaviour across variations in operating environments. The 
environment denotes the physical world (e.g., in the street, 
lighting conditions), the user (identification, location, goals 
and activities), social settings, and computational, 
communicational and interactive resources. Development 
refers to the acquisition of abilities, in this case encoded as 
situation models composed of the entities, roles and relations 
with which situation is described and service actions are 
performed.  

Systems for providing services based on observing 
activity must both adapt and develop. Adaptation is 
necessary to maintain consistent behaviour while 
accommodating changes in the operating environment, task, 
user population, preferences or some other factors. At the 
same time, human activity is too complex to be fully 
captured in a pre-programmed situation model. An activity 
model must develop through observation and interaction 
with users. A fundamental challenge is to provide both 
automatic adaptation and automatic development without 
disruption.  

Current learning technologies, such as hidden Markov 
models and neural networks, require large sets of training 
data – something that is difficult to obtain for an 
uncontrolled  environment. Development of context models 
requires new ways of looking at learning, and suggests the 
need for a new class of minimally supervised learning 
algorithms. This requires that learning be studied as part of a 
semi-autonomous system. It requires that systems have 
properties of self-description, self-evaluation and auto-
regulation, and may well lead to new classes of learning 
algorithms specifically suitable to developing and evolving 
context models in a non-disruptive manner.  

We are currently experimenting with techniques for 
adapting activity models based on pre-defined stereotypical 
situations [21]. We are exploring different approaches to 
learning for development of activity models starting from a 
predefined stereotypical model using feedback about the 
system actions. Because the different components of the 
model (entities, roles, relations, and situations) depend on 
each other, these cannot be developed simultaneously. Thus 
we have focused on the development of the situation 
networks and the associated system actions.  

Bayesian models (in particular Hidden Markov Models 
[22] as well as algorithms based on first-order logic [23] can 
be used to represent and adapt the situation network. 
However, these approaches do not have desirable properties 
concerning the extension of the number of situations. 
Bayesian models require a large amount of example data to 
extend the number of states. First-order logic algorithms 
cannot create new predicates (problem of higher order 
logic), which is necessary for the extension of situations. 
Thus we propose an approach for changes in the structure of 
the situation network, as shown in figure 4. 

 The input to the algorithm is a predefined situation 
network along with feedback from prior use mediated by a 
supervisor. The supervisor corrects, deletes or preserves the 
actions executed by the system while observing a user in the 
environment. Each correction, deletion, or preservation 
generates a training example for the learning algorithm 
containing current situation, roles and configuration of 
relations, and the (correct) (re)action. The differences 
between the actions given in the training examples and the 
actions provided in the predefined situation network will 
drive the different steps of the algorithm. 

Initially, our approach has been to directly modify system 
actions using the existing situation network. If action A is 
associated with situation S, and all training examples 
indicate that action B must be executed instead of A, then B 
is associated to S and the association between A and S is 
deleted. 
 

 
Fig 4: Overview of the algorithm for adapting system actions  

V. CONCLUSIONS 

 Activity models for context aware services can be expressed 
as a network of situations concerning a set of roles, entities 
and relations. Roles are abstract classes for entities. Entities 
may be interpreted as playing a role, based on their current 
properties.  Relations between entities playing roles define 
situations.  This conceptual framework provides default 
reasoning, focus of attention, and real time response for 
services that require observation of human activity. This 
model can also provide a  basis for adaptation and 
development of non-disruptive software services for aiding 
human-to-human interaction.   

Socially aware observation of activity and interaction is a 
key requirement for development of non-disruptive context 
aware user services. For this to become reality, we need 
methods for robust observation of activity, as well as 
methods to automatically learn about activity without 
imposing disruptions. The framework and techniques 
described in this paper are intended as a foundation for such 
observation. 
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